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Abstract
A simple and efficient finite element method is used for analysis of the input

impedance of the complex planar microstrip antennas with various shapes, which include

coaxial probe feed and microstrip line feed. For the electric integral equation, the formulation

is based on the Maxwell’s equations and the electromagnetic phenomena. The electric

integral equation is solved by adopting the triangular shaped basis element and using

the Galerkin procedure. In the integral equation, Green’s functions are used. Illustrative

numerical representations that demonstrate the validity, versatility, and efficiency of the

method are presented.
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The popularity of planar microstrip antennas has steadily increased in the past

decade because they posses a number of advantages such as low cost, low profile,

small size, light weight, easy to fabrication, and cornformability with existing

structures fabrication. During this time, microstrip antennas have become an

important area of communication and have led to a major development in antenna

theory. Usually, a radiating element of microstrip antenna, consisting of a very thin

metallic, is fabricated on a dielectric substrate, which is backed by a metallic ground

plane. Practically, there are two simple structures that are used to feed microstrip

antenna. These are coaxial probe feeds, and microstrip line feeds. The coaxial-fed

structure is often used in a single element because of the ease of matching its

characteristic impedance to that of the antennas, while microstrip line-fed structure

is often used in a microstrip array antenna.

A number of recent methods have reported on the subject of matching

impedance for microstrip antennas [l] - [6]. These methods are not accurate when the

substrate is thicker than about 0.024, are not adequate for predicting impedance

variation with feed location, and cannot be applied to any geometries besides

rectangles. A number of numerical analysis of the input impedances of microstrip

antennas have been proposed. However, most of the methods either have restricted

application or require a large computer memory and long computing time, e.g:, the

mode-matching technique and the transverse resonance method can only study

structures of rectangular cross sections, and a numerical technique, e.g., the finite

element method (FEM) can handle many arbitrary cross-sectional geometries

and provides a technique for accurate modeling of planar microstrip antenna.

The FEM in this paper is based upon a boundary condition, or integral equation

formulation, with the unknown being the current on microstrip patches and wire feed

lines plus their images in the ground plane. A set of vector integral equation is derived

which governs the current distribution on the patch. This set of equation is then
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solved, in which the patch current is expanded in term of a complete set of basis

function. This method can be applied to arbitrary shapes. The antenna is fed by a

coaxial probe and microstrip line. Details of the theoretical background and

formulation are presented in section II. The numerical results are shown in section III.

ILTHEORETICAL  BACKGROUNDANDFORMULATION

In this section, an integral equation for the surface current induced on a

conducting surface (microstrip patch) S is derived from boundary conditions on the

electric field. To solve the integral equation, a set of basic function and testing

procedure is developed and used to derive the elements of the matrix equation.

A. Electric Field Integral Equation

For a harmonically time varying fields dependence of emiW’ have been assumed,

the fields in nonhomogenous isotropic media, Maxwell’s equations can be adopted

here as
dHcwlE=VxE =-$ z-p-=
dt

iwpH

divD =  V-D =  V-&E = P (2)

curlH =  VXH = J + $ = J - iw&E (3)

divB =  V - B = V,LJH = 0 (4)

where E is the electric field intensity, D is the electric flux density, H is the

magnetic field intensity, B is the magnetic flux density, J is the source charge current

density, p is the charge density, ,LZ is the complex magnetic permeability, E is the

complex electric permittivity, i = J-1, and U) is the angular frequency. For

consideration the electric field intensity may be taken the divergence of both sides of

(3) as

V-VxH =  V  - (J-iu&E) (5)

For a vector identity (V * V x H = 0) , (5) reduces to

0 = V  - J - iwV*EE (6)
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Substituting (2) into (6), this reduces to

V . J = iwp (7)

Taking the curl of both sides of (1)

Vx&xE = iwV x H (8)
P

Substitution (3) into (8) yields

Vx&xE - w2&E = iwJ (9)
P

For a boundary value problem (BVP), the field equivalence principle [7] is adopted

here by considering an actual radiating source (antenna), which is electrically

represented by electric current density J1 and magnetic current density MI as shown

in Figure 1 (a).

r : arbitrarily conducting boundary q : electric conducting boundary

5 : magnetic conducting boundary

(a) Actual problem (b) Equivalent problem

Figure 1. Arbitrarily shaped microstrip patch antenna.

In above case, the equivalent problem of Figure 1 (b), an actual radiating source

radiate between the nonhomogenous isotropic media ( E~, ,L+ ) and free space region D ,

the boundary value problem to be solved is to satisfy boundary conditions on the

tangential electric and magnetic field components. The desired boundary value

problem is to satisfy (2) and (9), in 52, with the first boundary condition on E is

-fixE = MS on r, (10)
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and the secondary condition on E is
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iup

= J, on I’, (11)

where M, and J, are equivalent current densities, and Ei is an outward unit vector

normal to the boundary of arbitrary surface S.

To formulate problem of Figure l(b), the arbitrary surface may be replaced by

its equivalent, in which the electric conducting patch (surface) S has been removed,

- and magnetic vector potential A is useful in solving for the electric field generated by

a given harmonic electric current density J,. The magnetic and electric field, H and

E, respectively, due to J, , in the above equations can be given as

/@Or) = V x A(r) (12)

E ’“ ( r )  =  iwA(r)  - W(r) (13)

where E’“(r) is the incident field on the patch due to the magnetic vector potential A,

@ represents an arbitrary electric scalar potential, and r is a position vector. The first

boundary condition

follows that

-ii x

on E, in terms of A and Q, can easily be found from (13), and it

E’“(r) = - Ei x V@(r) - id x A ( r ) (14)
The magnetic vector potential in (13) is given as

A ( r )  =
I

G,&,r’) . J,(f)& (15)
s

where GA is the dyadic Green’s function associated with the magnetic vector potential,

J, is the equivalent current density on the surface of the planar circuit, r is the

position vector of the observer and r’ is the position vector of the source on the

surface S. The electric scalar potential in (13) is given as

Q(r) = ;j; sGp(‘,r’)p(r’)dS
I

(16)

where GP is the scalar potential produced by a unit charge associated with horizontal

current, and p is the charge density is related to the surface divergence of J,, which
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given by the continuity equation (7) as

V - J ,  =  iup (17)

Equation (13), with (15) - (17), constitutes the so-called electric field integral

equation. One notes that presence of derivatives on the current density in (17) and on

the scalar and vector potential in (13) suggests that care should be taken in selecting

the basic function and testing procedure.

Figure 2. Triangle pair and geometrical parameters associated with the interior edge.

B. Basis Function

An arbitrary closed surface S is givenand shown in Figure 1, The surface is first

approximated by a number of triangles in Figure 2. Each triangle is defined by an

appropriate set of faces, edges and vertices. Figure 2 shows two such triangles, T,’

and T,- with the nth common edge. The electric and magnetic current flow along

radial direction p,’ ’m triangle T,+ and similarly flow along radial direction p,’ in

triangle T,-. Referring to Figure 2, if 2, is the base length of common edge, then

height lengths of the two triangles T,+ and T,- are, respectively, given by 2~~:/1~ and

20;/1,,,  where a: represents the area of c. Any point in triangles c can be defined

either with respect to global origin, 0, or to the triangle vertices q. In Figure 2

the superscripts plus and minus signs designation of the triangles are

determined by choice of a positive current reference direction for the nth edge, which

is always assumed to be from T,+ to T,-. Hence, a vector basis function associated

with nth edge as
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’ 11 + r in T,+
2a,+ ” ’

0 otherwise.
\

V-9

The unknown current distribution on S is expanded in terms of a set of basis function

as
N

J,(r) = c J?lf, 69 (19)
n=l

where N is the number of interior (nonboundary) edges, f,(r) is the vector basis

function associated with the nth edge, and the coefficient J, can be interpreted as the

current density perpendicular to the edge.

C. Testing Procedure

The next step is to test the expansion functions f,(r) developed in [8], which is

obtained as follows.

The symmetric product of two vector function f and g is denoted by (f ,g),
and is defined here to be the surface integral of their scalar product. In other words,

(f ),g = I f *gdS (20)
S

where S denotes the surface where both f and g are non-zero, and (13) is tested with

f,, yielding

(Ei”,fm) = +kf,) + (Wfm) (21)
Using a surface vector calculus identity and the properties of f, at the edges of S, the

last term in (21) can be written as

(Wfm) = (22)

With the divergence of f,(r) in (1 S), the integral in (22) may now be written and

approximated as follows :
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In (23) the average of <D over each triangle is approximated the value at the triangle .

centroid. With similar approximations, the vector potential and incident field terms in

(21) can be written as

(24)

where the integral over each triangle is eliminated by approximating E”’ (0; A) by

their values at the centroid of each triangle, which is shown in Figure 2. With

(22) - (24), (21) now becomes
id
-+A(~,cI)-~:  +~C,'-)-pg]  + z~[o(& - a(~+)]

2
I= “[Ein(r;+).pL  + E'"(r;-).  p;]
2 (25)

which is the equation enforced at each triangle edge, m = 1,2, . . . , N

D. Matrix Equation
Substitution of the current expansion in

performed, an N x N system of linear equations

matrix form as

zz = v

(19) into (25), and the testing is

is obtained and can be written in

(26)

where 2 = [z~] is a N x N matrix, Z = [In] contains the unknown current

coefficients J,, which are defined by (19), and V = [ Vm] are column vectors of

length N. The impedance elements Z,,,,, and the voltage elements V, are given by

v, = _ +!_[@($+).pc  +Ein(&).p;] (28)

(29)

(30)



where r;’ and &,’ represent the centroid of the triangle e associated with the mth .

edge in the global and local coordinates, respectively.

The Green’s functions used in eqns. (29) and (30) have been presented in

various method, and should be corrected to get more accurate calculated input

impedance. In the present work, the functions given in reference [9] have been

adopted

III. NUMERICALRESULTS

In this section, we present some results obtained with present formulation and

compare them to measurements and numerical computations that have appeared in the

literature [2] - [4], [6], which serve to check the validity of the method, and also to

demonstrate its flexibility and efficiency. As an example, the figure 3 shows a Smith

chart of impedance loci for a coax-fed square patch. In this example, there are a total

of 2 18 triangular faces consisting of 27 1 edges. The unknown normal components of

the electric currents are to be solved at the 271 edges. The input impedances that are

derived using this method are compared with reference [6]. Very good agreement is

achieved by properly locating the position of a coaxial feed probe x0, as can be seen in

Fig. 3. It should be mentioned that the number of triangular elements is determined in

such a way that a convergent result can be obtained.
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microstrip patch,

0.148 cm

outer conductor
inner conductor r

_ Present method
- Theory [6]
_ measured [6]

Figure 3. Input impedance of a square patch : a = 2.4 cm, b = 2.4 cm, Em = 2.33,

tan6 = 0.001, h = 0.148 cm.

The second numerical example, a coax-fed rectangular patch is also analysed. In

this example, convergent results are obtained using 258 triangular elements. A

comparison of calculated and measured impedance for a coax-fed rectangular patch

are shown in Figure 4.
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Figure 4. Input impedance of a rectangular patch : a = 2.00 cm, b = 1.25 cm,

E, = 2.22, tanS = 0.001, h = 0.079 cm.

The third example, the surface of the rectangular patch and its feed-line is

modelled in terms of 3 12 triangular elementqwhich  convergent results are obtained.

The present method and the calculated results [2], [3] of input impedance for a

microstrip line-fed rectangular patch are shown in Figure 5.

+-a increment : 10 MHz
increasing clockwise)

0-0 Present method
m Theory [2]
- Theory [31

Figure 5. Input impedance of a rectangular patch : a = 11.40, b = 7.6 cm,

E, = 2.62, tan6 = 0.001, h = 0.159 cm.
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In Figure 6, theoretical computations of input impedance are compared in the

Smith chart plots with measurements for a coax-fed circular patch. In this example, a

total of 345 triangular elements are obtained for convergence.

T
2r

1 0
increment : 100 MHz
(increasing clockwise)

O-Q Present method
- Theory [4]
_ Measured [4]

Figure 6. Input impedance of a circular patch : r = 1.41 cm, E, = 2.62,

tan6  = 0.001, h = 0.16 cm

IV. CONCLUSION

In this paper a numerical method for the analysis of the input impedance of

rectangular, square and circular microstrip antenna, which excited with a coaxial line

and a microstrip line, has been presented. It has been shown that the FEM is a very

powerful tool for analyzing the planar microstrip patch modeled with triangular

patches. The method can be used to accurately predict the input impedance of all

antenna shapes. The validity of the model is demonstrated by comparing the numerical

and experimental results for four representative antenna structures.
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