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Abstract

This article uses tensor transformation procedures in order to derive a terrian-

following coordinate system that is frequently used in a number of regional and mesoscale

hydrostatic models. Tensor transformation procedures are used so a- +o ensure physical

invariance of the primitive equations between the Cartesian and terrian following systems.

Among the major conclusions are as follows:

1. Applying the chain rule the hydrostatic equation, before transformation from a

Cartesian to a terrian-following coordinate system, yields a different set of equations than if

the hydrostatic assumption is applied after the tensor transformation is made. The hydrostatic

equations in the two terrian-following representations are the same only when the slope of the

terrian in the model is much less than 45O.

2. Variations of the metric tensor across a grid volume appear in the set of

conservation equations as a result of averaging the equations over a grid voume. Such

derivations have always been ignored in existing non-hydrostatic and hydrostatic meteoro-

logical models.
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Introduction

The use of a terrain-following coordinate system in meteorological modeling was first

introduced by Phillips(1975),  and it has since been shown to be an effective mathematical

representation. This concept of defining a coordinate surface coincident with the bottom

topography permits more efficient use of computer resources, and it simplifies the application

of lower boundary conditions. In Philips’ original form, adopted by many models [e.g., the US

Weather Service forecast models, Rieck(1979)],  pressure is used to define the independent

vertical coordinate CT, where surface pressure is used as the lower boundary.

For example, defines (3 = p / p, , where p, is the surface pressure while p is the pressure at

any level. For this example (3 = 1 corresponds to the ground surface.

In recent years, CY has often been defined as a function of the height rather than

pressure. This is advantageous because p, is a function of time, whereas terrain height is not.

The general form of the coordinate system transformation is given as

z-z
GZsA

S-ZG
(1)

Where s is usually defined as a constant (generally defined as the top of the model)

while zG is the terrain height. The variable Z is height, while 0 is referred to as a

generalized vertical coordinate. This form of a terrain-following coordinate has been used in

recent years in regional and mesoscale models in which the hydrostatic assumption has been

applied. In developing their equations, however, these investigators have applied the chain rule

separately in the vertical and horizontal dimensions (utilizing the hydrostatic relation). Using

(l), this results in the transformed hydrostatic equation given as

a7-c '-'G g
-=-,Bao (2)

where n = cPT / 8. This is appropriate if the hydrostatic assumption is exactly

satisfied. However, the invariance of the physical representation (which must be retained,

regardless of the coordinate formulation) is lost if the assumption is not exact, as discussed by

Dutton (1976, p. 252). On the synoptic scale, in which horizontal scales are always much
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larger than the vertical scales of motion,this requirement is very closely satisfied.

On the mesoscale, however, it may be more appropriate to perform a tensor

transformation of all three components of the equation of motion, before making the

hydrostatic assumption. For use in a non-hydrostatic model , a rigorous transformation

between coordinate system requires use of the properties of tensor analytsis in order to assure

that the invariance of the physical representation is retained in all coordinate systems.

We perform a tensor transformation of the equations of motion and then apply the

hydrostatic assumption. The resultant equations reduce to the form when certain simplifying

assumptions are made. Moreover, since the hydrostatic assumption is applied later in the

derivation of the transformed equations, a more in-depth understanding of the coordinate

transformation is obtained.

The equation of motion

Dutton (1976) demonstrated that the contravariant form of the equation of motion in a

generalized coordinate system, derived from the rectangular x-y-z (xi) system, can be written

as

&’ ji .. an: a1 ijl _

+iT iT..=
dt ,’

-2;“e :_ - g  - 2c-- +I
&’ dz

(3)

where ii’ is the contravariant component of velocity, G-ij the contravariant metric tensor, j;-’

represents the independent variable in the new coordinate system, and

The term &a ?‘/a d is obtained from G-ijd @ / d YJ. The tilde is used to indicate a

variable in the transformed coordinate system, while &ij/ = Eb’ in the Cartesian system.

The tensor &Q, is defined as zero if any two of the indices are equal, +l. If an even

permutation of the indices occur, and -1 with an odd permutation. The parameter 6 is the
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determinant of the contravariant form of the metric tensor E4 while Fi, called the Christoffel

symnbol, is given by

Eq (3) is somewhat cumbersome to work. However, it is essential to retain all the terms

arise from the transformation in order to present tensor variance

When applying these equations to simulate meteorological systems, only the vertical

coordinate to the rectangular system customarily transformed. In addition, it is necessary to

average the transformed equations since (3) is only valid over spatial and temporal intervals

which are much smaller than the mesoscale space and time scales used in meterological

numerical models.

The functional form of this generalized vertical coordinate transformation, in terms of

the original Cartesian system, can be written as

j;l = x
-1

X=X

p = Y y = p

p = mX,Y,Z,t) z = h(P, z2, F3, r)

where 0 can be given by (1).

The contravariant and covariant forms of the metric tensor 6:‘j and Gij are given as

r
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d h d hd h d h
3 pa 22 jj-ji;r'

while the only nonzero  Christoffel symbol is

so that the covariant derivative of velocity is given by

i

all-i
-i =U.. d j;j ’ i = 1,2

VI
- + i?ijld iI3
d ;j J, , i=3

determinant of the Jacobian of the transformation,

bY

1

a”h
ax-1
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The tangent and normalbasis  vectors l’or the generalized vertical coordinate system in terrm

of the rectangular representation are given by

‘1’ = i,

JJ2 = j, 1 (4)

where, since T; - Tj does not equal zero when i f j, this coordinate system in general is

nonorthogonal. in the original rectangular coordinate system, the normal and tangent basis

functions are the same (i.e., ij and k) and are orthogonal to one another.
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The individual contravariant and covariant velocity components are found from
ii’ -- ‘?l’ * u and Z; = 7; * u , respectively, where IJ = ui -I- vj -I- wk , so that

dhiY1=u+-w
d 2
i?hi&=v+-w
d P

dh
c3=77

Kinetic energy is computed from these expressions by

e = 1 / 2(ii1ii1  + ii2G2 + ii3ii3).

As mentioned earlier, averaging of (3) is required if these equations are to be used in

meteorological numerical models with finite grid and time intervals. The correct form of

averaging this equation is called the grid-volume average and is given by

(-) = l+At j;11+hi1j;22+bi2j~+A~ ( )mc~~&t / (AZ’ >(Ax2 >(Ao>(At > (5)

The dependent variables can be decomposed into average and s subgrid-scale

perturbation expressed as

where 0” is a deviation from the subgrid-volume average. The symbol $I represents any one

of the dependent variables.

Using (5), Eq. (3) can be rewritten as

22

(6)



In deriving this form it has been assumed that 8 = e(l •F 8”8-1)  g 6 and that .

-=. .I,
-IU = =i.u , k%.

d t’
etc. (therefore ii’ = 0, etc.)

t (7)

Assumption (7), when applied in a rectangular coordinate system, is called Reynold’s

averaging. To make this assumption in the transformed coordinate system, however, it is

necessary to require that changes of the metric tensor over the four-dimensional grid-volume

APAZ2AoAt are small, since this tensor appears in (6). Expressed mathematically, this

requirement can be written as

-
Gti  = r,,, $+A2 ~;~+Az’,-~+Ao

(6!‘j)dCT&2&‘dt / (&f>(&2)(Ao)(At) G 3.

This requirement has significant implication on the choice of the vertical generalized

coordinate since it must be selected such that variations of the gradient of the transformed

coordinate within the grid volume are small compared with the grid volume averaged

gradient.

The advective term in (6) is derived from

2 ~j 3 2 +cj,,  8 $” xi - .= - -
d ;j

a
;j

+ rj, [;ju 1 + ;;$‘;I” = Ej:fi + Ej”;;‘,

where the assumption that changes of the metric tensor and its derivatives are small permits

the removal of the Christoffel symbol from the integrand [this assumption can also be written

as].

where
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The Coriolis term can be expanded as

with Q =(O,Slcost#J&in$)=(O,f^/2,f  /2).

In addition

dh do---
a3 ax3 - l

a 2 a z2
dz=dz=O

with the decomposition of variables into resolvable and subgrid scale terms Eq(6) can,

therefore, be written for the generalized vertical coordinate representation in component form

as

a Cl”__$-_ __
a j;j ga?i gao a%

a ? 3-G-m
d h p+ d h ;;2+ d h ~3

dz2 a-3”

(8)

a ii2”_--_j”--  __a j;j @E @CT  an:
a x2 a,+ (9)
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The vector velocity V = EjTj , g3 is in the same direction as the cartesian velocity iV,

whereas ? and g2 are, in general, at some angle to iJ and ii in the original rectangular

system as shown by E!q (4)

The Hydrostatic Assumption

To illustrate the effect of utilizing the hydrostatic assumption in (g-lo),  it is convenient

to use (1) as the generalized vertical coordinate. The relation between the spatial coordinates

in the two representations is given by

-1 =x x -1x = x

j;2 = Y
= -2

Y x

z3 - [z-zG(xd

- ’ = ’ [S -z&y)]

z = h = ‘3[S-zG(;’ ~2j]+zGcI~  ;2), ,
S

so that the nonzero quantities needed to evaluate the Jacobian, metric tensor and Christoffel

symbol are given as

and

‘-0 szG=-_.
s-ZG 8 j;$’

r3 = S-0 &G
21 s-ZG 3 :‘a z2

r -3 =--_.  1 3 ZG

23

j73 =--_.  1 d ZG

s-ZG 3 z2’ l3 s-ZG 8 2”

with

(13)
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The individual contravariant components can be expressed in terms of the rectangular

components as

;;“l =ii,
;;2 = 7

,

E3 - -
-u$p=s)+F~(~)+v-&.

Using (12) and (13)

nonzero terms than in the

particularly evident in the

Coriolis terms.

in (8)-(lo), it follows that this system of equations involves more

original specification in the rectangular system. The extra terms are

vertical equation in which Christoffel symbols appear, and in the

At this point it is appropriate to introduce the hydrostatic assumption. From (4), it is

evident that

when

which permits (10) to be rewritten as

-<<da”1 I Z 1&_
dY

F=- z3 3 p--
t d j;j

;Tj#,  3 ;r3”
x”j - rBEj;la ,, - rpj”;;l”

--aa” 2aif4 1 do--- do z-1

z a;3 azg--fazu9

(14)

(1%

as long as the magnitude of d % / d Z3 is at least as large as that of

d n/d x”‘andd  if/d Z2.
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If the hydrostatic assumption is applied, where acceleration in the CJ direction [which

is essentially verrtical as given by (14)] and the Coriolis terms are much less than the

pressure gradient and the gravitational acceleration terms, then (15) reduces to

.

d===_=_g do( 1-l g s-zg-- =-------
d ;3 do e d 2 8 s

(16)

similary, (8) and (9) reduce to

Eq (16)-(  18) are in the form obtained when the chain rule is applied separately for the

horizontal and the vertical equations of motion. As shown here, however, (16)-(  18) are only

approximate relationships when a complete tensor transformation is applied, and they are valid

only when, (14) applies. The terms given in (14) can also be written as

Hence, the inequality given by (14) states that Id zG / d XI ~3 Id zG / 3 ~‘1 << 1 iS a

necessary condition to assure the validity of (16)-(  18). In terms of the terrain representation,

this condition requires that the slope must have an angle << 45”.

The subgrid-scale terms which are included in (17) and (18),  must also be

parameterized in terms of known quantities in order to completely specify these equation. In

the original rectangular coordinate system, it is the customary practice to decompose the

subgrid-scale terms into vertical and horizontal components, such that, for the equation of

motion with I = 1, for example,

27



_p,“,” = F,,, - $“;’ = Fiu (j = 1,2)

where FZU represents the vertical turbulent fluxes of the east-west, U , component of velocity,

while FL indicate the horizontal turbulent fluxess of u . This separation into two components”
in mesoscale models is necessitated for two major reasons:

1. In most mesoscale models, the horizontal grid spacing (Ax, Ay) is much

larger than the vertical spacing (Az) so that the parameterization of subgrid scale mixing in

the horizontal and vertical directions would be expected to be quite different.

2. Much more is known about the functional form of vertical subgrid scale fluxes

than of horizontal subgrid-scale fluxes. Thus, two completely different parameterizations are

required, with the vertical flux representation being much more detailed.

In a terrain-following coordinate system, when

a ZGI I-37
dI I2 <<l,
dY

it, therefore, is desirable to retain this separation into vertical and horizontal flux components,

To illustrate this, multiply the first two terms on the right-hand side of the equality in (17) by

p(s-z&s so that

The transformed grid-volume average conservation of mass relation, can be

written as

p (S - ZG) ;;j d Z + mj” d U1”
-u-

S a xi a j;i 1
= p(smzo)

S
(Ej +cj") a ($+il"

a ;j )I
’ - 'G=- ) (fj + ;;j”)(zl + ;;l”)

S

1
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In writing expressing, me anelastic form of the conservation of mass equation in the

transformed system, given by

-.,,
along with the assumption that uJ

-iz
= u = 0 as defined by (7), has been used. Similar

terms, of course, can be derived for the advection terms in (18).

Thus, in the transformed coordinate system the subgrid-scale fluxes are given as

p(s-zG)~=  &_

S “1
( j = 1,2),

,<s-zG>_..,_,..=F.j_ j
UJ US ” l

where J&
iii

and FL i?’ fluxes in the Z3 direction and in the
iii

are, respectively, the

2’ and i2 directions.

Since it is assumed that

and so

it is reasonable to also assume that the fluxes in the Z3 and x3 directions in the two systems

are almost equal and so
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ii3”.“1”  _ swyK
,

s--G

where the overbar  with the R superscript is used to emphasize that this averageing

volume is different from the given by (5) (in this case a rectangular volume).
-RI, ,I

Moreover, if w u is assumed proportional to an exchange coefficient which is a

function of height 5 above the ground and the mean velocity profile liR,as is often

done, then

ii3”?” S I, ,I

z-w” =---
s--G

sinceii1=ii,5=(T(s-zG)/s  a n d  a/d zw[s/(s-zo)](d/d  Z3): thenthis

approximation for the vertical sub-grid scale flux becomes

ii3”ii”’-” _(_LJ&~)~-

and so the F3 flux term in (7) can be represented as

where K is the function of D(s - zG) / s (i.e., is a function of height above the ground). The

subgrid flux in the Z3 direction in (18) can be shown to have the same form.

The subgrid-scale fluxes in the 2’ and Z2 directions could be written in a similar form;

however, since essentially nothing is known about their function form on the mesoscale in the

rectangular coordinate representation, no purpose is served by writting them here. Subgrid-

scale fluxes in the horizontal direction are included in models for computation reasons only.
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C o n c l u s i o n

This paper uses tensor transformation procedures in order to derive a terain-following

cooordinate system which is frequently used in a number of regional and mesoscale

hydrostatic models. The technique utilizes tensor transformation procedures in order #to  ensure

the physical invariance of the conservation relations between the Cartesian and terrain-

following systems.

The analysis has shown that, in general, applying the chain rule separately to the

hydrostatic equation and the horizontal equations of motion in order to transform them to a

generalized vertical coordinate system yields a different form of equation than when the tensor

transformation is applied before the hydrostatic assumption is made. Only when the slope of

the terrain is much less than 45”, the two procedures of obtaining transformed equations will

yield the sames form.
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