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SOLUTION OF NON-SIMILAR 2D BOUNDARY LAYERS

USING A TIME-MARCHING SCHEME
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Abstract

A method is presented for the solution of 2D boundary layer equations by using a time-like

algorithm in which the time-dependent boundary-layer equations are marched in time until the

steady solution is found. The governing equations are numerically solved without employing the

similarity law and transformed into a body-fitted curvilinear computational domain. Therefore, the

computation is general and can be applied to flow over complex models. The method is applied to

a number of experimental test cases, where excellent agreement between predictions and measure-

ments is obtained.
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INTRODUCTION

In the current survey, there are a number of studies which have been done to develop a

technique to capture viscous flows by using Navier-Stokes equations. In most of these methods, the

flow near the wall is not resolved due to computational restriction on the grid size and therefore an

empirical wall function is used to model the effect of viscous layer at the wall. The wall function

can be roughly thought of as a solution to the boundary-layer momentum equation using Prandtl’s

mixing-length turbulence model when convective and pressure gradient terms are insignificant.

However, there is no strong evidence of similarity profile particularly for 3D boundary layers.

Therefore, the wall function limits the ability of Navier-Stokes methods to accurately predict the

flow. One way to obtain a better resolution at the wall with little computational cost is to use a so-

called zonal approach. In a zonal approach, the boundary layer equations are solved at the solid

boundary in a fine grid and the Navier-Stokes equations are solved outside the boundary layer in a

coarse grid together with appropriate matching boundary conditions. The Navier-Stokes solutions

provide an outer boundary condition for ‘boundary equations in the viscous layer. In return, the

boundary layer solutions provide information near the solid boundary. The solutions are advanced

simultaneously on a coarse and on a fine grid. Methods outlined for zonal formations may be seen

in Tang and Hafez [ 1) and Hafez et al. [ 21.

This paper outlines the first phase of a project for the development of one such zonal

method for turbomachinery calculations. This phase of the work is mainly concerned with the

development of an efficient boundary layer solver which its implementation and application are

simple and straightforward.

The methods for solving boundary-layer equation have a common technique that the

partial differential equations of the boundary layer are transformed to one having an algebraic

representation [3].  The methods differ only in the implementation of the marching schemes.

A summary of many methods was prepared by Cebeci and Smith [4],  and White [ 51. Simple

methods and numerical considerations related to the finite difference solution of the boundary layer

equations were described in two excellent books by Anderson et al. [3]  and Fletcher [6].

Lakshminarayana [7]  reviewed and assessed various computational fluid dynamic tech-

niques for the analysis and design of turbomachinery. He recommended that the boundary-layer

equations for turbomachinery flow should be written in a curvilinear system and a rotating cylindri-

cal co-ordinate. These would enable the equations to account for the effects of rotation and surface

curvature. These set of equations was derived by Yamazaki [8]  and was applied to calculate the

boundary-layer on propeller blades by Groves and Change [9]  and Oshima [lo].



A fully implicit finite difference approximation of the boundary layer equations was devel-

oped by Zangeneh and Asvapoositkul [l 11.  The method was based on space-marching scheme and

was constrained by stability and zone of dependence conditions. Another approach is based upon a

time-like algorithm in which the constraints were relaxed 6121.
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transformed to the curvilinear system (5,  <). A sti

stretching hr to relate the curvilinear co-ordinate to a
-

co-ordinate) [8].  In this co-ordinate, 4 is defined

distance measured normal to 5.  The relation between
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-aightforward procedure is to use the metric

L standard co-ordinate system (e.g. Cartesian
-

along the body surface and < is the actual
- -

Sian co-ordinate system (x, z) is shown in Figure 1

equations for this co-ordinate system can be written

the curvilinear system (5,  4) and the Carte-

. Two-dimensional unsteady boundary-layer

as :

Figure 1 Notation  for the calculation
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at wall 4 =u : me no-sup conauion, u = w = u

either a specific temperature, T = T
b

or heat-transfer condition, dT  = q or H =
ai

at the edge of boundary layer 4 + CO

a specified free-stream conditions,

u=ue,T=T orH=He e

where hI is the metric stretching factor

H
b

For more detail of these transformations see Yamazaki [8].  The subscript b means the value
-

at the body surface < =0 and subscript e means the value at the edge of boundary- -layer.

TURBULENCE MODEL

The turbulent shear stress -pu’w’  and the turbulent heat flux -ocp w’T’  may be evaluated

in terms of the turbulent viscosity (p,)  and the turbulent Prandtl number (Pr,) [3].

I , au
Tt = -pu  w = pit; ( 7 )
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Experimental results indicate that the turbulent Prandtl number based on the turbulent eddy

viscosity and conductivity is a constant, usually taken as about 0.9 Therefore the turbulent model-

ling problem is reduced to the evaluation of the turbulent eddy viscosity. In this paper the eddy

viscosity model suggested by Baldwin and Lomax [13] is used.



NUMERICAL METHOD

Since the bounaary layer tlows contam  severe velocity graaients normal to tne SUIEK~,  UK

accurate solution of the boundary layer equations requires a very fine mesh near the wall. It is

customary to use some forms of similarity transformation. These transformations however, are not

entirely satisfactory for computing the entire range of laminar, transitional and turbulent boundary

layers. One of the efficient ways of solving the boundary layer equations is to transform the

equations before attempting to solve them. This technique may stretch such co-ordinate in order to

account for boundary layer growth. For this propose a variable grid spacing is formed by using a

geometric series such that the quotient of two consecutive terms is constant. Therefore, the distance

to the kIh grid line is given by

(RYk-’ - 1)
4 ,  =*cI  (RY-1)

(9)

where RY is grid growth factor and is a number greater than 1.

*r, is the distance from the solid wall to the first grid line.

For turbulent flow calculations, the value of A<, is chosen so that the first grid point away

form the wall is placed approximately A<+  = 1.5 (defined as ,&td-) in order to resolved the

laminar I ;ublayer.

The physical mesh is now non-uniformly spaced and we can relate this non-uniformly grif
- -

system (5,  <)  to the uniformly grid system (<,<) (see Figure 2) through <=< (<) and <= <(c,  <

1141. Therefore the equations can be written as:

(10)

p-+--+!?!!al pu8u
dt hl a< h,

(11)
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In the above equations, the viscosity is the sum of molecular and eddy viscosity (i.e,

~=/t+j+urd;=;+;).Th be su scripts
t

5 and < in the equations mean differentiation with respect

to i and < respectively. The barred term is a non-uniformly space,d  computational grid.
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DISCRETISATION

The momentum and energy equations are solved by using a time-like algorithm. In this
52

method the derivatives along the surface (i.e. ?L ) are represented by an explicit second-order.

accurate upwind difference, while the.derivatives normal to the surface (i.e. a ) are discretised by

an implicit second-order accurate central difference. The time derivative in the governing equation

is approximated for an expansion level n+l with forward differencing. The resulting equations are

non-linear due to presence of terms such as pu in the momentum equation. To linearise the

equations, it is possible to use Newton linearisation or simply to use a lagging technique in which

all the coefficients are evaluated using the previous iteration results (i.e the value at time level n are

used to solve the equation for time level n+l). The latter iterative approach is implement in this

case. Using normal finite difference operators the discretised form of momentum and energy equa-

tion can be written as:



The algebraic set of equations represented by the above equations can be solved for the

unknown velocity u and total enthapy H quite efficiently by inverting a tridiagonal matrix. Once u

and H are found density and dynamic viscosity is updated. Then the continuity equation is solved to

compute w. The continuity equation is discretised in the following way:

Atp+$“<(pu)“” +$;&+(pu);;; +<$-<(pw);:: = 0 (16)
1 I
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COMPUTATIONAL PROCEDURE

In the present computation, a time-marching scheme is employed however it is applied for

steady flow. Using the discretization described in the previous section and the definition of eddy

viscosity, the conservative equations are in a form of a tridiagonal system of equations that can be

solved in an uncoupled manner. The momentum equation is solved for u”‘l,  the energy equation for

H“+I, equation of state for Tnrl and p”+‘,  viscosity law for p”” and continuity equation for w”“.

Finally, Baldwin-Lomax model is used to find PI’+*.I This sequence represents one cycle of an

iteration procedure. The next time step is to update these values and the calculation is repeated until

the difference between the two successive values of u be less than a specified tolerance (usually

~lx10-~).  If the convergence criterion is not satisfied, all the parameters are updated and the

process is repeated.

RESULTS

In order to validate the method, the computer program was constructed and applied to the

test cases ranging from a flat plate to a more complex geometry. The calculations were started from

the leading edge to the trailing edge using only the free-stream values of all parameters and the

specified geometry.

The turbulent boundary layer that develops on a flat plate (a 5m long waxed plywood) is

reported in case 1400 of [15]. It is incompressible flow. The measurement was taken with air
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Figure 3 Comparison for incompressible turbulent flat plate boundary layer Case 1400 [15]

n measured [14] __  present method

velocity of 33 m/s and kinematic viscosity of 1.51~10-~  m2/s, with turbulent flow starting at

x>O.O87  m. The computation was started with those experimental data and transition from laminar

to turbulent flow was set to occur at x = 0.087. A 51x31 grid point of 5 and < direction was used.

The predicted displacement thickness and skin friction coefficient at various distances are shown in

Figure 3, where an excellent agreement can be observed. The above computation was carried out

using a SUN Workstation and the maximum iteration was 37 to pass the convergence criteria of

1xPo-4.
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To extend the method for complex geometry, boundary layer on a waisted body of revo-

lution was employed. A set of these experimental results for compressible turbulent boundary layer

was presented in [16]. The geometry and computational grid is shown in Figure 4. The shape was ,.

specified in term of the distance from nose over the body length (x/L) and the body radius over the

body length (z/L) where L is 1.5 2 m. The experimental skin-friction values were obtained by the

razor blade technique. Only the measured free-stream Mach number distribution along the distance

from nose was available. The computational grid used for the calculation of the flow consisted of a

51x31 mesh. To obtain the intermediate values of free-stream velocity from the measured data a

cubic spline interpolation was used. It was given that the flow over this body of revolution accel-

erates up to about x=0.3 and is then followed by a decelerating flow up to x=0.7.  Comparison of

the predicted and measured skin friction coefficient at Moo=0.6  and 2.0 are presented in Figures 5

and 6 respectively. In each case the calculation results for both cases correlate well with the

measurements for ~~0.7.  The less accurate prediction for x > 0.7 may be attributed to the accumu-

lation of the error from  ~Tfh  cal’culatiun  sirice  133 expetimental’  &ta  for the  free-stream values were

available for ~~0.05.  It should also be noted that the effect of transverse-curvature is high where

the radius of the body is quite small, for example when x/L = 0.6-0.8. The convergence criteria

in this case is 1~10~~ and it was needed about 24 iterations (average) to satisfy the convergence

criteria. The more iterations are needed where the flow was decelerated due to the existing adverse

pressure gradient there.



Figure 5 Comparison of skin friction coefficient for waisted  body of revolution Mm  = 0.6
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Figure 6 Comparison of skin friction coefficient for waisted  body of revolution
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CONCLUSION

The equations and procedures described in this paper are general and can be applied to flow

over complex geometry. The basic methodology of the present method is to time-march the un-

steady boundary-layer equations of flow to steady state. However, its application restricts to the 2D

flow on a stationary model. The method developed in this study has a potential to take into account

of 3D flo\ N and rotation. This is a next step for future research.
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,ATURE

C
P

h 1

H

‘  ,. f

specific heat at constant pressure

z
skin-friction coer’ficlent  w

: Pd

metric coefficients

total enthalpy

index of the grid point system

thermal conductivity

Mach number

iteration level, time step, index of time

static pressure

Prandtl number

4 j

k

M

n

P

Pr

T temperature




