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SOLUTION OF NON-SIMILAR 2D BOUNDARY LAYERS
USING A TIME-MARCHING SCHEME

1

Wancha  Asvapoositkul
King Mongkut's University of Technology Thonburi

Abstract

A method is presented for the solution of 2D boundary layer equations by using a time-like
algorithm in which the time-dependent boundary-layer equations are marched in time until the
steady solution is found. The governing equations are numerically solved without employing the
similarity law and transformed into a body-fitted curvilinear computational domain. Therefore, the
computation is general and can be applied to flow over complex models. The method is applied to
a number of experimental test cases, where excellent agreement between predictions and measure-

ments is obtained.

I'Lecturer, Department of Mechanical Engineering|
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INTRODUCTION

In the current survey, there are a number of studies which have been done to develop a
technique to capture viscous flows by using Navier-Stokes equations. In most of these methods, the
flow near the wall is not resolved due to computational restriction on the grid size and therefore an
empirical wall function is used to model the effect of viscous layer at the wall. The wall function
can be roughly thought of as a solution to the boundary-layer momentum equation using Prandtl’s
mixing-length turbulence model when convective and pressure gradient terms are insignificant.
However, there is no strong evidence of similarity profile particularly for 3D boundary layers.
Therefore, the wall function limits the ability of Navier-Stokes methods to accurately predict the
flow. One way to obtain a better resolution at the wall with little computational cost is to use a so-
called zona approach. In a zona approach, the boundary layer equations are solved at the solid
boundary in a fine grid and the Navier-Stokes equations are solved outside the boundary layer in a
coarse grid together with appropriate matching boundary conditions. The Navier-Stokes solutions
provide an outer boundary condition for ‘boundary equations in the viscous layer. In return, the
boundary layer solutions provide information near the solid boundary. The solutions are advanced
simultaneously on a coarse and on a fine grid. Methods outlined for zonal formations may be seen
in Tang and Hafezl [ 1] and Hafez et al. [ 2]!

This paper outlines the first phase of a project for the development of one such zonal
method for turbomachinery calculations. This phase of the work is mainly concerned with the
development of an efficient boundary layer solver which its implementation and application are

simple and straightforward.

The methods for solving boundary-layer equation have a common technique that the
partial differential equations of the boundary layer are transformed to one having an agebrac
representation [3]] The methods differ only in the implementation of the marching schemes.
A summary of many methods was prepared by Cebeci and Smith [4], and White [ 5]/ Smple
methods and numerical considerations related to the finite difference solution of the boundary layer

equations were described in two excellent books by Anderson et a. [3] and Fletcher [6]

|
|
£l

Lakshminarayana [7] reviewed and assessed various computational fluid dynamic tech-
niques for the analysis and design of turbomachinery. He recommended that the boundary-layer
equations for turbomachinery flow should be written in a curvilinear system and a rotating cylindri-
cal co-ordinate. These would enable the equations to account for the effects of rotation and surface
curvature. These set of equations was derived by Yamazaki [8] and was applied to calculate the
boundary-layer on propeller blades by Groves and Change [9] and Oshima [10]]
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A fully implicit finite difference approximation of the boundary layer equations was devel-
oped by Zangeneh and Asvapoositkul [11]] The method was based on space-marching scheme and
was constrained by stability and zone of dependence conditions. Another approach is based upon a

time-like agorithm in which the constraints were relaxed [12]]

GOVERNING EQUATIONS

DINCE wountiar y Hd YTy~ AUCTHEUW-ONoawurtaud rHELATH AL EIO WS, guug cyuaniuis oLgug WY
transformed to the curvilinear system (£, £)| A su-aightforward procedure is to use the metric
stretching h| to relate the curvilinear co-ordinate to a standard co-ordinate system (e.g. Cartesian
co-ordinate) [8]/ In this co-ordinate, Ej is defined along the body surface and E_J is the actua
distance measured normal to &| The relation between the curvilinear system (] () and the Carte-
sianl co-ordinate system (x, z) is shown in Figure 1. Two-dimensional unsteady boundary-layer

equations for this co-ordinate system can be written as:

u

g

S

Figure 1 Notation for the calculation

Continuity equation

o 1 [olpy) ﬁ(hLﬂ (1)
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&4 momentum  equation
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Energy equation

B opugl P00 B 8( p) ou
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+(%[—puulw'] (3)

The boundary conditions for the governing equations are given below.
@ wall § =t * ang-no-sup conamony U = W = Al

either a specific temperature, T = T,

A
or heat-transfer condition, °N = qorH=H

o (4)
a the edge of boundary layer é —l ol
a specified free-stream conditions,
u=uu,T=TLorH=Hd (5)

rwhere h I 1s1the metric , stretching factor

o (%J +[ai} (6)
ot o€

For more detail of these transformations see Y amazaki [8]. The subscript b means the value

at the body surface a =0 and subscript e means the value at the edge of boundary- -layer.

TURBULENCE MODEL

The turbulent shear stress "y, and the turbulent heat flux —pcy w T| may be evaluated

in terms of the turbulent viscosity (].LI) and the turbulent Prandtl number (Pr,) [3]]

LI | aLI
T = — W = - 7
{= —pPu ula—d (7)
i e T
Cow D =oee
B (8)

Experimental results indicate that the turbulent Prandtl number based on the turbulent eddy
viscosity and conductivity is a constant, usually taken as about 0.9 Therefore the turbulent model-
ling problem is reduced to the evaluation of the turbulent eddy viscosity. In this paper the eddy
viscosity model suggested by Baldwin and Lomax [13] is used.
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NUMERICAL METHOD

Since the bounaary ayer| tlows contain severe velocity graaienty normal to tne surrace e
accurate solution of the boundary layer equations requires a very fine mesh near the wall. It is
customary to use some forms of similarity transformation. These transformations however, are not
entirely satisfactory for computing the entire range of laminar, transitional and turbulent boundary
layers. One of the efficient ways of solving the boundary layer equations is to transform the
eguations before attempting to solve them. This technique may stretch such co-ordinate in order to
account for boundary layer growth. For this propose a variable grid spacing is formed by using a
geometric series such that the quotient of two consecutive terms is constant. Therefore, the distance
to the k" grid line is given by

ARY -

. @JT (9)

where RY is grid growth factor and is a number greater than 1.

AG| i the distance from the solid wall to the first grid line.

For turbulent flow calculations, the value of A(;I is chosen so that the first grid point away
form the wall is placed approximately A ~ 1.5 (defined as ¢ (P, "f ) in order to resolved the

b

laminar gublayer|

The physical mesh is now non-uniformly spaced and we can relate this non-uniformly gri.d

system (&) Q to the uniformly grid system (£,L) (see Figure 2) through £=§ (E ) and £4E(E| g )
[14]) Therefore the equations can be written as:

o 1|apu)  dpu)|  dpw) (10)
81+E|:a—§+qg—“a‘€— +C_,‘;_“aq—=0

du | pu oy L Pu, du e I@p _( aﬁ] 1)
Pal "hy g hl‘céaf PR h o M

oH  pudH % JcH OH_, dlp 8H 4 du
Ry pk Ay %«J s oli-sle ] 0

In the above equations, the viscosity is the sum of molecular and eddy viscosity (i.el

Lo e supscripts £ and ¢ in the equations mean differentiation with respect
i 'uﬂl Pr Pr Prx)’[q . a d = =P

to E‘ and (; respectively. The barred term is a non-uniformly spaced computational grid.
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0 7 EJ
a) Physical model b) Cornputational model

Figure 2 Curvilinear Body-fitted co-ordinate transformation

DISCRETISATION

The momentum and energy equations are solved by using a time-like agorithm. In this
method the derivatives along the surface (i.e. — ) are represented by an expll(:lt second-order.
accurate upwind difference, while the. derlvatlv&s normal to the surface (i.e. — ) are discretised by
an implicit second-order accurate central difference. The time derivative in the governing equation
is approximated for an expansion level n+1l with forward differencing. The resulting equations are
non-linear due to presence of terms such as puy in the momentum equation. To linearise the
equations, it is possible to use Newton linearisation or simply to use a lagging technique in which
all the coefficients are evaluated using the previous iteration results (i.e the value at time level n are
used to solve the equation for time level n+l). The latter iterative approach is implement in this
case. Using normal finite difference operators the discretised form of momentum and energy equa-

tion can be written as:

p | (u+ul) p | (u=|u)) pu
Bl N iy e 5 n+l
pA U+ h { 3 Veu [+ 5 5 Agu +—h1 QEF’Q“

1
+pwE 8, = h—Vgp +§;8C(u§28;u“”) (13)
1

P (U+IU|) P ( ~|u ) 1
pA1H+—[7v H|+-— AH -8, H"! 4 pwi -5, H"
h, B h, 7 qg £ P Ca £

1
:CQB{“{%CQSQH"” +p(l—ﬁ]uqc —Scu"*'} (14)

The operator notations used here are:

Aate (15a)
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Vou- el 02 (15b)
2 2AE
=3u+4u;, —u;
T i+1 i+2 15
n+l n+l
oun+! = L=
= 2AL (A

The agebraic set of equations represented by the above equations can be solved for the
unknown velocity u and total enthapy H quite efficiently by inverting a tridiagonal matrix. Once u
and H are found density and dynamic viscosity is updated. Then the continuity equation is solved to

compute w. The continuity equation is discretised in the following way:

Ir
+_
h, ¢

n+l

(ou)] +6,8:(pw); 1 = 0 (16)

k+j

1 o
Ap+ f_lT Vg (pu)

COMPUTATIONAL PROCEDURE

In the present computation, a time-marching scheme is employed however it is applied for
steady flow. Using the discretization described in the previous section and the definition of eddy
viscosity, the conservative equations are in a form of a tridiagonal system of eguations that can be
solved in an uncoupled manner. The momentum equation is solved for u™'] the energy equation for
H"™!] equation of state for T""! and p""| viscosity law for u™| and continuity equation for w""]
Finaly, Baldwin-Lomax model is used to find pf”j This sequence represents one cycle of an
iteration procedure. The next time step is to update these values and the calculation is repeated until
the difference between the two successive values of u be less than a specified tolerance (usually
~1x107")] If the convergence criterion is not satisfied, all the parameters are updated and the

process is repeated.

RESULTS

In order to validate the method, the computer program was constructed and applied to the
test cases ranging from a flat plate to a more complex geometry. The calculations were started from

the leading edge to the trailing edge using only the free-stream values of al parameters and the
specified geometry.

The turbulent boundary layer that develops on a flat plate (a 5m long waxed plywood) is

reported in case 1400 of [15]] It is incompressible flow. The measurement was taken with air
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velocity of 33 m/s and kinematic viscosity of 1.51x107] mzfs,l with turbulent flow starting at
x>0.087 m. The computation was started with those experimental data and transition from laminar
to turbulent flow was set to occur at x = 0.087. A 51x31 grid point of T; andi] direction was used.
The predicted displacement thickness and skin friction coefficient at various distances are shown in
Figure 3, where an excellent agreement can be observed. The above computation was carried out
using a SUN Workstation and the maximum iteration was 37 to pass the convergence criteria of
1x10 %

5‘1 {em) ¢

A (m) “ A l_rh]
a) displacement thickness (cm) b) skin friction coefficient

Figure 3 Comparison for incompressible turbulent flat plate boundary layer Case 1400 [15]

= measured [14] ~—— present method

To extend the method for complex geometry, boundary layer on a waisted body of revo-
lution was employed. A set of these experimental results for compressible turbulent boundary layer
was presented in [16]] The geometry and computational grid is shown in Figure 4. The shape was
specified in term of the distance from nose over the body length (x/L) and the body radius over the
body length (z/L) where L is 1.5 2 m. The experimental skin-friction values were obtained by the
razor blade technique. Only the measured free-stream Mach number distribution along the distance
from nose was available. The computational grid used for the calculation of the flow consisted of a
51x31 mesh. To obtain the intermediate values of free-stream velocity from the measured data a
cubic spline interpolation was used. It was given that the flow over this body of revolution accel-
erates up to about x=0.3 and is then followed by a decelerating flow up to x=0.7. Comparison of
the predicted and measured skin friction coefficient at Mm=0.q and 2.0 are presented in Figures 5
and 6 respectively. In each case the calculation results for both cases correlate well with the
measurements for x<0.7] The less accurate prediction for x » 0.7 may be attributed to the accumu-
lation of] thel error frond thel calculation sirce o experimentad data forl the free-stream vajued were
available for x<0.051 It should also be noted that the effect of transverse-curvature is high where
the radius of the body is quite small, for example when x/L = 0.6-0.8. The convergence criteria
in this case is 1x10 1 and it was needed about 24 iterations (average) to satisfy the convergence
criteria. The more iterations are needed where the flow was decelerated due to the existing adverse

pressure gradient there.
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Figure 4 Geomelry and computational grid for the waisted body of revolution

¢ix107
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0
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0.2

04 0.6 08 1

| Figure 5 Comparison of skin friction coefficient for waijsted body of revolution i\ = 0.6
oo

m measured [16] = — present method

-3
¢rxl0
4 b
al
1
H .
2 ‘
'
0 ' : " - . 1 XL
0 02 04 06 0.8 1
| Figure 6 Comparison of skin friction coefficient for waisted body of revolutipm i f %-0
o

= measured [| 6] =--— present method
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CONCLUSON

The equations and procedures described in this paper are general and can be applied to flow

over complex geometry. The basic methodology of the present method is to time-march the un-

steady boundary-layer equations of flow to steady state. However, its application restricts to the 2D

flow on a stationary model. The method developed in this study has a potential to take into account

of 3D flom and rotation. This is a next step for future research.
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NOMENCI] _ATURE

skin-ftiction coefficient ji‘:_g
specific heat at constant pressure
metric coefficients

total enthalpy

index of the grid point system

thermal conductivity

Mach number

iteration level, time step, index of time
static  pressure

Prandtl number [%]

temperature







