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Abstract

Flexible assembly machines may be improved and costs reduced by relaxing constraints on

part fixturing accuracy and employing compliant devices in assembly effecters.  An effector-mounted

remote center compliance device that corrects for spatial misalignments of prismatic parts of gen-

eral cross section has recently been demonstrated. This spatial RCC was designed by considering

the possible assembly contact states given a range of initial position and orientation uncertainty

between the mating parts. These contact states are arranged in a constraint network in the fashion of

a Petri-Net controller. However, the control transitions are mediated by compliances  reacting to

contact forces rather than from force sensing and discrete event controller schemes. A path through

the constraint network of a square peg and hole task is found from initial to final assembly states.

This path defines a single compliance relationship that is realized with an practical assembly device.

Extensions of this design technique to other assembly tasks are discussed.

Assistant Professor, Center of Operation for Field Robotics Development (FIBO)



Assembly represents the largest area of direct and indirect cost in most manufactured

products [Riley 831.  Assembly also consumes, on average, 50% of a product’s in-plant cycle

time. Automated assembly systems cannot effectively assemble parts featuring the three most

ubiquitous assembly primitives: prismatic insertion, threaded fits and general path insertion. Such

assembly tasks exhibit a high level of difficulty [Sturges 901.  Work by Whitney [82] has shown

that the passive technique is far superior to active control schemes, in term of reliability and low

cost for two dimensional-symmetric insertion, i.e., round pegs in round holes. A remote center of

compliance (RCC) [Simunovic 751 was invented for such a purpose. Passive assembly means that

parts mating routinely occurs without an active control scheme to correct for imprecise part/effecter

position. This assembly approach combines strategic open-loop part motion with compliance that

responds to contact forces with desired motions. A strategy for inserting a chamfered, round peg

into a round hole was established by Drake et.al. [77], and Whitney [82].

Using a pure positional control, the ensured success of peg insertion requires that the part

clearance is not smaller than the accuracy and/or the repeatability of the manipulators and manu-

facturing jigs. Laboratory assembly robots which use force control often operate with inherent

instability [Whitney 871,  [Eppinger 921.  Active force-sensing control in the industrial environment

is still far away from being practically applied at reasonable cost.

Recent work employing vibratory systems for insertion by Asada et. al [92] demonstrated

two dimensional assembly of cable connectors. Optimum settings for the vibrator were obtained by

Taguchi analysis to minimize friction and jamming. Work by Paetsch et.al. [13] focused on solving

insertion tasks (square peg in hole) with a multifingered gripper. Paetsch implemented a force

feedback strategy to ensure that intentional instability was employed. In this case, positional infor-

mation was not accurate due to slipping at the fingers, and additional vision feedback was sug-

gested. In general, active vibratory systems are slow and do not guarantee convergence towards the

desired assembled state. An insertion task comprising a dual peg-n-hole was modeled by McCarragher

and Asada [93] as a discrete event dynamic system using Petri nets. This “discrete event” control-

ler moves towards the next desired contact while maintaining currently desired contacts. However,

statically indeterminate states cannot be reliably detected. In particular, wedging must be avoided

since recovery is difficult.

The conventional RCC has been shown to be unreliable for three dimensional, asymmetric

insertion, e.g., square peg and hole with chamfer [Sturges and Laowattana 941.  In this kind of task,

forces and moments are unlikely to pass through the vertical plane containing the compliance center

of the device, and thus the torque and displacement about the vertical insertion axis cannot be

ignored. This torque is resisted by the apparent stiffness of the compliant members (e.g. shear
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pads) in the RCC, leaving the peg jammed against the chamfer. This jamming situation can occur

at a point-surface contact between the bottom comer of the peg and either the area outside the

chamfer, a point-surface contact on the chamfer, or a line-line contact between edges of the peg

and hole. In addition, three dimensional virtual wedging [Sturges and Laowattana 921 is possible

due to the three point contacts which cannot be avoided by the RCC [Sturges and Laowattana

19941,

Our previous work has also demonstrated that a compliant mechanism reacting at right

angles to contact forces is sufficient for polygonal peg insertion. Such an “Orthogonal compliance”

was designed through knowledge of the physics of the task and the effector  as a system. This

knowledge embodies relations among geometry of contacts, forces and moments. One result of this

approach is a passive device using a single orthogonal compliant axis, to be described later. Al-

though, this so-called Spatial Remote Center of Compliance (SRCC) is a passive device, we

expect that active assembly devices will also benefit from the method developed in this paper. In the

next section, we will describe a contact constraint analysis tool that can be used as a road map for

designing compliances  to accomplish assembly tasks.

2. Constraint Analysis in Two Dimensional Peg Insertion

A state network can be used to map contact states, one or more paths of which may lead to

successful assembly. A state network may be comprised of a geometrical description of the contacts

in assembly such as point-point, line-surface, etc., and the admissible transitions among them as

shown in Fig. 1. At any node (N) in the network, these contacts are maintained by a set of physical

and geometric constraints. The symbol @ is used to represent the nodes. Thus, we define a

Constraint Network as a state network that embodies physical models of contacts. Note that the

transitions from one node to another is mediated by constraints at the contacts, whereas in the Petri

net scheme [McCarragher  and Asada 931 sensing and control govern those transitions. We will

describe further the significance of using a constraint network to design compliant systems for

assembly tasks. In this section, we show the similarity between the Petri net controller and a passive

mechanism, the RCC, in two dimensional peg insertion. The advantage of passive mechanisms over

active control will also be discussed.

Figure 1 A state network
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In the Petri net scheme, nodes represent either single or multiple contacts. A transition,

symbolized by T, directs changes from one node to another. Each transition implies gain or loss of

a single contact pair. The symbol q denotes a discrete control that governs such a transition. Fig.

2 shows a such a transition between two nodes in the Petri net modeling of the two din

[After McCarragher and Asada  19931

In this case, the input function defines the node Nl, having the point-surface contact (1 -e).

Before the Petri net controller can fire the transition Tl, the node Nl must be active. This means

that both a contact constraint at Nl is satisfied and the control Vl is enabled. The contact pairs

resulting from the transition Tl is defined by an output function. If we represent each node by a Pxp

vector where p is the number of contact pairs, firing a transition results in switching a token value

between one and zero in the vector. The control Vl is determined by the generalized velocity cj of

the mating parts expressed by the associated pair of nodes. To find cl for any transition, we may

employ the admissible velocity v as derived by McCarragher and Asada [93]:

v= D,i (1)

where D is the derivative with respect to the generalized coordinates of the normal distance

from the corresponding surface to a given point of interest on the peg. Thus, there are three possible

condition:9:

V = 0, for maintaining contacts,

V < 0, for gaining contacts,

V > 0, for loosing contacts.

(2.2)

(2.3)

Let ATi be the change of the token value in the P”’  vector. Putting AIYi into (2.1) to

(2.3) as 0, 1 and -1 respectively, we obtain a general form for the enabling condition:



AlYiDiQ  < 0 .

Similarly, the disabling condition is given by:

( 3 )

ArjDji  2 0,  b’j  #i . (4)

Note that by solving a set of simultaneous linear inequalities Eqs.(3)  and (4),  and one

equality constraint in Eq.(2.1),  we may not obtain a unique solution for q.  Moreover, no feasible

solution may exist. If there is more than one solution, the Max.-Min. strategy is used to determine

the optimal velocity [See detail in McCarragher  and Asada 931.  For example, let Nl and N2 in Fig.

2 represent the contact states l-e and 6-b respectively. Before firing the transition Tl, eq. (2.1)

is required for maintaining the contact (l-e). To enable the transition resulting in the (6-b)

contact, we apply the enabling condition, eq.(3).  The disabling condition, eq.(4)  must also be

applied to avoid the contacts (5-b) and (7-c). This disabling condition cannot be applied to the

contact (2-f) since this would be inconsistent with the previous constraints, and therefore we are

unable to guarantee the avoidance of the contact (2 -f). Although the Petri net gives a solution for

peg motion in the desired directions (-x, +z, + 4 ), it does not include a model of friction and

sliding motions while the peg is making a line-line contact (1 - 6) with the hole. The absence of

such states in the model and the difficulty of recognizing them in practice makes it difficult to

determine the final contact state at N2. Also, jamming conditions must be considered at nodes

having two point contac ts.

The RCC can avoid such jamming conditions. The compliance center (O), shown in Fig.

3 is properly placed at a point where the ratio of forces and moments fall within the jamming

diagram (see Fig. 4). We can easily show, with a force balance that the RCC also moves the peg

in the same directions as found in the discrete event controller as follows:



The forces and moments which can avoid jamming at the one-point contact (1 -e) [Whitney

insertion depth and coefficient of friction respectively. ‘l‘he moment and lateral force are support

forces provided by angular and lateral springs (Ka and K ) in the RCC. We assume that both (x

and $) displacements start at zero and move to x1 and 4: :

F, = KxX,,  and (7)

M = K&, . 03)

Substituting Eqs. (7) and (8) to Eqs.( 5) and (6), we obtain the states XI and @1at  Nl.

Then:

+, = r (2h+l)L.

Kcx

(10)

During two point contacts(l-e and 7-c) shown in Fig. 3, the relation among M, Fx and

F for the peg sliding into its hole is found from the jamming diagram in Fig. 4 to be:

(11)

Following a similar procedure, we obtain for state N2

+2- $, = A&- p-Kx(l+~)(mw).
Kci

(12)

Substituting eq. (9) and (10) into eq.(l2), the state N2 gives a simple relation between

)2 =
G

- PK.
KCX

(13)
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Eq. (13) shows the compliances that govern the transition from node Nl to node N2.  In

general, we can determine states with positional uncertainty at each node (i.e. xi+sxi,  q+z,i,  @  irfr6+i)

by augmenting the given geometry of the peg and its mating hole. The symbol 6 indicates the

uncertainty in each dimension. In this case, there may be ranges of compliances required for each

transition. For successful insertion, compliances governing all transitions in the state-network must

be considered. The design values for compliances are determined by the intersection of such ranges.

One-point M
contacts rb

contact

k-J-$ One-point
contacts

Figure 4 The Jamming Diagram [After Whitney 821

For two dimensional peg insertion, the motion strategy is pushing downward (+z).  Since

the initial contact is (1 -e) resulting from downward motion, there will be displacement of the peg

in -x direction. Thus, the directions of motion are (-x, +z, and + 0) as found by the Petri net

approach above. However, the RCC will give the contact (1 - 6), instead of the contact (6-b) as

the final state [See also Whitney 82 for details, especially his Fig. 8. Note also that although the

direction of impending motion in both schemes is the same, the Petri net result is in the form of an

accommodation control whereas the solution by the RCC is a stiffness control. In addition, the

optimal generalized velocity is based on the maximization of the minimum distance to each con-

tacting entity. The fine motion resulting from the RCC, however, aims at avoiding wedging and

jamming constraints [Whitney 821  and may not be optimal in the same sense.
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3. Modeling of contact states

Modeling of contact states in a quantitative form is important for reasoning about con-

straints and degrees of freedom among parts in assembly tasks. In this section, we will model

contact states with screw theory [Ohwovoriole and Roth 19811,  wherein screws serve as a wrench

of constraint and a twist of freedom. When the virtual coefficient of two such reciprocal screws is

zero, the contact between the two assembled parts is maintained while sliding may occur. The

property of reciprocity is analytically given by an operator:

i = 01
[ 3IO ’ (14)

where I is a 3 x 3 identity matrix. For a given wrench, Wi, and twist, Ti, we denote

reciprocity by:

W$Ti = 0, (15)

(16)

(17)

where W. and Ti are six dimensional axis coordinates of force and instantaneous velocityI
vectors, respectively.

A pair of screws is termed repelling when its virtual coefficient is positive. Repelling

screws break contacts, between parts, i.e.:

W%T> 0 . (18)

Lines in space can be also modeled as screws by using Plucker  coordinates [G,  %,I.  c are

direction,cosines of a line which are not necessarily normalized. G,, are the moments of the line

such that if P is any point on this line:

G, = P x5 (19)

Contact constraints for bounding edges of polygonal parts such as a square peg and its

mating hole are conveniently expressed in these coordinates. The development of jamming forces

is greatly facilitated with this notation. We will begin enumerating all possible contacts between the

square peg and hole. In the next section, one of many possible state networks for successful

assembly will be constructed based on this enumeration.



Figure 5 Feature definitions of a square peg and hole

Figure 5 shows a set of feature definitions for the square peg and hole. Des@

bounding edges and forces have been attached. A reference frame for the peg is denoted with primes

(‘). The four side edges are described by line segments p,’ (i= 1, .., 4); the four bottom edges by

line segments ri’  (i = 1, . ., 4). 0’ is the origin of reference coordinates for the peg which is

attached to the first bottom comer, p,. For the square hole, the four top inner edges are described

by line segment CXi  (i = 1, . . , 4). The outer edges of the chamfer are denoted by line segment E

(i = 1, .., 4) and the four chamfer comers by line segment 6, (i = 1, .., 4). It is assumed that the

inner edges lie mutually normal to lines CCi. 0 is the origin of reference coordinates for the hole

which is attached to the first inside corner, q,. In addition, each chamfer surface is defined by a

point e.  in the plane which contains lines Cti and Ei. Examples of feature definition defined in1
coordinates are:
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The terms w and W are widths of the peg and hole respectively. With the definitions above,

we will enumerate contact states between the peg and the hole. There are six types of contacts to be

considered, viz.: [Salisbury 821  point-point, point-line, point-plane, line-line, line-plane and

plane-plane contacts. In Appendix I, we list these contacts using a code to indicate multiple

contacts that involve chamfer-edge crossing and/or bottom crossing. The symbols xx.y.z refer to

contact types, number of point-surface contacts and number of line-line contacts, respectively.

The term “Para”  is used to describe a configuration in which two adjacent corners of the peg touch

the hole. When two opposite corners of the peg are in contact with the hole, we refer it as the

“Ortho” configuration [Sturges 901.  There will be subscripts p and o to represent the para and ortho

configuration at the symbols y and z. Combinations of all possible contacts between peg and the

chamfers (2 3 6 contacts), the peg and the hole (14 3 contacts) and special cases (20 contacts) are

tabulated in Appendix I. The total number of contact states is found to be 399. We will find ways

to truncate this state space in as follows. Many contact states in each of the three categories i.e.

peg-chamfers, peg-hole and special cases are symmetrical, meaning that the peg is constrained in

the similar manner and numbers of degrees of freedom are same. Owing to the symmetry of the

parts to be assembled, the total number of states reduces to 10 3. Most of these states are at present

difficult to detect by force sensors due to noise [Suehiro and Takase 901.  An extra motion is

sometimes required for detection while the peg may or may not move into desired directions for

completing the insertion.

Using the definitions given, the lateral and angular displacements of the peg with respect

to applied forces and moments for successful assembly can be determined as in Eq. 12 & 13 above.

These relationships will help us devise insertion strategies, some of which may be performed by

passive mechanisms. For example, an RCC is modeled as a non-linear, planar compliance. With

this device guiding the motion of a cylindrical peg, an insertion path at the top of the peg can be

simply a straight line, while the RCC reacts to contacts to guide the peg. It is necessary that the

RCC follows a path (consisting of a series of contacts) that avoids wedging and jamming condi-

tions. Suitable forces and moments, satisfying constraints at each contact, must be applied to avoid

jamming. Fig. 4 shows such constraints on one-point and two point contacts for the planar case

[See also Whitney 821.

The same approach may be used in devising strategies/mechanisms for prismatic insertion,

e.g., a motion sequence that predicts certain contacts occurring in order and that changes to a new

direction after each contact has occurred. Alternatively, one could use an RCC to correct 8 and 0

errors, and at the same time, to correct for azimuth misalignments by deliberately rotating about the

z-axis. To know in which direction to rotate, we need to pre-orient the peg. Assuming that the

maximum angular uncertainty in azimuth is equal to &W , the angle for pre-orientation is just W
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(either sign). The assembly direction in azimuth would then be in the opposite direction. This

Azimuth Rotation Strategy (ARS) is further described in detail with the help of a contact state

network. To construct a state-network, we define the following parameters as shown in Fig. 5:

s1 = area surrounded by 81q8p,
s2  = area surrounded by 82~$33cx2
s4  = area surrounded by 84~481  a4
a2  = area below a2

a3 z area below a3

We would like to ensure that the first contact made is known a priori. One strategy to

ensure this is to tilt the peg slightly such that one corner touches first. The ARS for pre-orienting

the azimuth axis is also applicable for the x and y axes. By properly pre-orienting the peg in the

+8,  -4, and +v directions, the corner p, can be tilted to become the lowest point of the peg, as

shown in Fig. 5.

In lowering p, to touch the surface sl, p,s, becomes the starting state. With the ARS, the

possible starting states reduce from 103 to just 1. If the peg is rotated in the -\y direction, there

will be three possible second states namely state [ P1(Xl  }, state { plsI, p4s4}  and state (pl on 81).

Note that the state (p, on sl} is undesirable since it is a dead location from which the peg cannot

move further. All other states beyond this level can be derived similarly, i.e. rotating in the -W

direction in combination with other motions. Fig. 6 shows a state network reaching a number of

subgoal states. Due to limited space in this figure, gain or loss of more than one contact at time is

shown. We can always decompose the node to represent just one contact change. At each of the

subgoal states shown, all corners of the peg are below the ai lines. Reliable insertion is assured

when the square peg is in the subgoal state since parts of the geometry of the peg and hole have been

matched and all of the forces which could cause jamming are pointing towards the assembly

direction. However, the possibility of additional wedging conditions still exists if a residual torque,

generated by the azimuth stiffness, exerts substantial forces at the side wall contacts.

Note that this state network is derived by essentially fixing 8 and 0. Some states can be

skipped if the magnitude of 8 or $ reduces during the transition. Likewise, if 8 or @ can increase,

there will be more undesired states in the network. Since an RCC is expected to be a part of this

new strategy, 8 and $ cannot grow, and this state network will conservatively represent the actual

contacts. Further insertion after either of the subgoal states is reached still depends on a suitable

pitch to avoid wedging and jamming. Here, pitch refers to the ratio between simultaneous transla-

tional and rotational displacement in a single motion.



Figure 6 A State Network by Rotating \fJ

The state network in Fig. 6 can be further truncated by adding constraints. For example,

in the next section, we will derive the constraints to insure that another point-surface contact on the

chamfer does not occur while the peg is moving from the first point surface contact, prsr,  to the first

line-line contact, P,CCl.  Generally, the contact states progress from pas1  to the groups described

below. The nrinciual states are underlined:

l Group 1. One “b” line-line contact : @,q, d+$ one or two or three point

contacts from combination of the set pzsz, p3s3,  and p4s4}

0 Group 2. Two “p” line-line contact : @,ai, P,aJ, WJi,  I$$ or one or two

point or line-line contacts from combination of the set p,s,, p3s3,  )‘,a2  and

VY

* Group 3. Two “p” line-line contacts and one point contact in the hole: ( P, aI, P,a,,

pzaz or PsaS  A 1 alPI, P,CQ P 2a2 or p3a3)  Y,C$ or Y,a, or p3s3)
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l Group 4. Two “p” line-line contacts and two noint contacts in the hole: ( P,  ai, P,a,,

P,az and p3a3]

In general, there are two approaches to reaching the subgoal states through the groups listed

above.

3.1 A motion strategy using active movement with or without the RCC

In the literature, an active motion strategy with the RCC has not yet been reported, but

success in the three dimensional peg insertion tasks would be possible if the motion strategy follows

the state network of Fig. 6. The RCC corrects planar errors (x and $) whereas an active movement

by a robot aims at reducing the error in W. Active movement alone without passive mechanisms,

i.e., force control guided assembly, may lead to instability [Eppinger and Seering 921.  Another

active motion strategy is generated by the “magic wrist” [Oh, Hollis  and Salcudean 931,  a mag-

netically levitated mechanism that can be used to simulate the functions of RCC in axisymmetric

two dimensional peg insertion tasks at high bandwidth.

In active systems, it is possible for the robot to generate a constant torque. However,

without suitable pitches for W correction, the peg could rest at a dead contact state.

Attachment to Quill

Conventional RCC

Figure 7  S p a t i a l  R e m o t e  C e n t e r  o f  C o m p l i a n c e

3.2 Passive movement by the SRCC

As shown in Fig. 7, the SRCC consists of a conventional RCC in series with a mechanism

for correcting errors in the azimuth angle (called a z-corrector). The RCC corrects the lateral and

angular errors in the x and y axes while the z-corrector corrects the azimuth error. One type of the
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z-corrector, depicted here, is a skewed rod-mechanism which converts linear motion into angular

motion or vice versa. Each rod is connected to a pair of plates by ball joints. Such joints can

accommodate spatial motion of the rod while its ends are constrained to move in planes. The top

plate is aligned parallel with the bottom plate by a central shaft. The pitch of the z-corrector can be

varied by adjusting the initial angle of the rods. The spring inside can also be adjusted to give a

preset force. The preset force helps maintain the initial position of the z-corrector when there is no

contact. This configuration of the z-corrector exhibits the low frictional internal resistance to

motion necessary to assure sliding contacts between the mating parts.

Using the ARS, the peg is initially oriented to 8,  -t 6,, , $, + 6,, , and w, Yc Ej,,,,  such that

the peg tilts as shown in Fig. 3. To successfully insert the peg into its hole, all these initial errors

must be corrected by the SRCC. The SRCC simultaneously corrects both the error in the vertical

planes (x, 4, and y, 8) and generates the necessary torque for W-rotation to urge the peg to follow

the state network. This torque also avoids wedging, jamming and dead locations, e.g., state {pi on 6* ) .

When the z-corrector is acted on by a thrust force due to contacts between the peg and

hole, it responds by providing a torque and rotation in a direction which is orthogonal to the force:

Torque = Pitch x (thrust force - preset force ) . (22)

The effective starting pitch is set by the initial angle of the rods, either clockwise or counter

clockwise, and the direction of rotation should be opposite to the bias direction W,. With a suitable

pitch, wedging and jamming on the chamfer and inside the hole can be avoided, as we will

subsequently show. The same pitch should not allow the peg to get stuck on a chamfer corner, i.e.

the state (~~6,). In other words, the locus of points p, on the chamfer surface si should not

intersect with 6i. Rotations due to compliances  in the RCC do no frictional work but absorb energy

in their springs. Thus, the RCC rotates 8 and @ fractionally  before W moves. Once the initial

preset force has been balanced, further displacement in u/ implies sliding on the chamfers , chamfer

edges and/or walls of the hole.

In the passive compliance approach (Eq.22),  the amount of torque is generated according

to reaction forces from the hole, rather than being developed through open loop position commands

as mentioned in 3.1 above. When the peg slides into the hole, arriving at one of the subgoal states,

the reaction force reduces and so does the torque of the z-corrector.
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4. Derivation of Contact State Constraints

We now find the constraints that govern contact states in the state network obtained in the

previous section. From Fig. 6, there are several successful assembly paths. We will show constraint

equations for the following path: (ptst)-+(Prc~t)+(Ptat,  P&t)-+[Prcxt, /34a4, p3a3). The nodes

corresponding to this path are Nl, N2, N3 and N4 respectively. After N4, the peg will reach at a

subgoal state: (Ptar,  P4a4,  pza2, pjaj).  These constraints can be classified according to physical

contact modality (viz.: point-surface, point-line, and line-line), dead point avoidance and jam-

ming avoidance due to friction. Relationships for physical contact will be given by Eq.(26),

Eq.(31)  throughEq.(45),  and Eq.(48)  through Eq.(50).  Constraints governing dead point avoid-

ance will be shown in Eq.( 2 3) and Eq. (2 7) through Eq. (2 9). Jamming avoidance will be given

by Eq.(30),  Eq.(46)  and Eq.(47).

Using the ARS, the state (p,sr  ) is initially assumed. During the state transition from to (p,st  ),

{Plot) it 1s possible that other point-surface contacts may occur and peg corner p, may rest in

chamfer corner 61. T he peg can be constrained to avoid such situations as follows. Fig. 8 shows

the starting state (plsl ) before moving to ( p at t ).  The maximum possible angular displacement Av
can be approximately obtained from:

Ay  = y112-y~l  2 sin*‘$,i 1 (23)

Figure 8 State transition from ( p t s t ) to ( P, a, )

where w is the width of the peg and x1 is the initial error along the x-axis between peg

corner p, and hole corner q,. The subscripts also represent the node number. The subscript 12

indicates the intermediate state between Nl and N2, viz., position and orientation corresponding to

(ptat  ).  Note that the origins of the peg and hole frames reside at the corner p, and the corner q,

respectively. Since there is no active force in the y direction, there is no change in 0:

ez = e12 = 81 (24)



It is required at this stage of the assembly process that @I  be greater than zero such that the

states (~$2)  and [pgj)  can be avoided. In addition, the states (p&)  and (p&j can be avoided by

initially setting $ 1 2 0. Assume that the peg is now held by the RCC. Whitney [82] has shown

that the change in $ during a point-surface contact is given by:

KX

0 12 = $I+
i i(
& L,B-rA)

(K,Li + Kb)  B-KxLgrA ’
(25)

where

A = cos q+p sinq,
B = s in  q+p COST.

For an RCC, the distance between the peg tip to the compliance center L is zero. The termI:
r is approximately 0.5~  and ?J is the chamfer angle. The vertical distance Z1 is measured from the

state (plsl), and to the state (pla,).  $,, is at the state (plal ). This state is between the point-

surface and the line-line contacts. Note that both 81 and 0, can be made more than zero by

orienting the peg through the ARS. With some manipulation, we obtain a constraint in $ during

this transition:

$ 1 2  r. Kxzl WA
2K4Btan  TJ *

(26)

The ratio between Z1 and W,,  defines the pitch of a motion during chamfer crossing. Our

previous work 1941 has determined the value of pitch to avoid the dead location { P,&~  } to be

pitch = -k = w sq cot<  . ( 2 7 )
WI2 2

Angle < can be obtained as follows: during the change from the state ( p,s, ) to the state

{ ~,a,)  as shown in Fig 9, we assume the same uncertainty at both the point p, and the location of

the hole, q,, represented by a circle, with a radius of r . The uncertainty circle of q, intersects O!,IJ I
at I1.  From 11, a line is drawn, tangential to the uncertainty circle of p,. The line with maximum

pitch, i.e., I1 pU (the longest one), is selected. Let < be the angle I, pU makes with the perpendicu-

lar to US. Angle < can be graphically computed. Pitch of eq. (27) is found by ratio of the linear

and angular displacement from:

Linear displacement = (Iip,) c< STJ , (28)

and Angular displacement = 2(hJ si
w * (29)
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Figure 9 Selected Path(PUl,)  on the Chamfer

Eq. (2 7) is a necessary condition to be satisfied for successful chamfer crossing. However,

chamfer surface. The limiting value of /-I,  as determined in [Sturges  and Laowattana 941 is

lumb friction represented by p, will also determine whether or not p, can actually slide on the

2 (Pitch) cq
lJ= ,In/2=’

(30)

where

a = (SvC$  + dkWS$  + C VCe)  , and

b  =  (cyc$  + s0sy/sr$  -s@).

[82], we find the $, duringFrom the relationships expressed in eq.( 10) of Whitney

line-line contact:

a

$2 = Jq412- K&2+  f-q.
(31)$I + z2Kx (z2 + p)

By substituting Eq. (26) into Eq.( 31),  we eliminate $12 and find the constraint in @ at

N2 is

+ 2 = &WA - Kx (~2  + 1-4 @tan  rl) .
(:2Btan q) [K,+  + zzKx (~2  + yr)]

(32)

The geometric constraints for line-line contacts can be derived by using the following

definitions of lines in Plucker coordinates:
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p; = (‘0 0 1 0 0

(3;  = (0 0 10 w

y; = (0 10 0 0

&= ( 1 0 0 0 0

a1 =  ( 0 1 0 0 0

a4  = ( 1 0 0 0 0

Angle p,, with respect to the

matrix D” between the peg frame (prir

0 L
o),

-w),

0 1,

0 1,

0 1.

hole frame, can be determined by using a transf

( 3 3 )

( 3 4 )

( 3 5 )

( 3 6 )

( 3 7 )

(33)

‘ormation

ned) and the hole frame:

where

Df =

(40)

Elements d in the rotation matrix are:
XY

1 WJcb
R[ =

secwscfl -sly& sesyJ+cecyJs~  1

I

8 I I
wc~ SesyJs~  +cyJce ceslp$  -secy
-G cl@3 Jc+ce  . (4la)

The terms x0, y, and z0 indicate the distances between the origins of the hole and the peg

frames along the x-axis, y-axis and the z-axis respectively. For small values of 8, C/l and I/I,  R

ite N2, the subscript o in Eq. (40) becomes 2. Substituting eq. (4 0) into eq. ( 3 9)) we
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The constraint for achieving the state ( p 1 a 1) is determined through the reciprocal screw

system, mentioned in section 3 viz.: p ,&1 = () :

From Eqs. (23), (24), (26), (27), (30), (32) and (43), the transition from Nl to N2

is expressly governed by compliances, peg and hole geometry and pitch of the z-corrector.

Similarly, the compliance and other parameters that govern the state transition from N2 to

N3 can be derived. An additional constraint to eq. (43) is required, viz.: the reciprocal screw for

the state ( P4CCt). Following a similar procedure according to Eq. (3 9) through Eq. (4 3), we obtain:

x3 = Y3(@3W3  + c~3Qv3s$3) - w(c$3sO3)
@3qJ3s$3 - se3qJ3

(44)

To maintain the state { l31 al, /&Q),  the constraint Eq. (4 3) and (44) must be satisfied

simultaneously. Note that the subscripts in Eq.(43)  change from 2 to 3 since we are considering

states at N3. The state (Y4CX4)  must also be avoided before the second line-line contact occurs.

The repelling screw system, y4da4 > 0,  expressing this constraint gives:

zO> _iauL.
x0 CW

(45)

Although at this stage, the peg has successfully slid on the chamfer into the hole, it is still

possible for the peg to jam while making two line-line contacts. In general, we can determine a

moment M required to overcome frictional forces at such multiple contacts as

M = fi,w
P 2’

(46)

where f. are contact forces. An example of four point contacts are shown in Fig 10. Multi-

plying Eq. (46) by p and dividing both sides by the friction force, we found the upper bound of

pitch needed to avoid jamming of multiple contacts inside the hole or at the chamfer edges C$ to be



Figure ID Four point contact at onset of jamming

Eq. (44) through Eq. (47) show that the transition from N2 to N3 is governed by peg and

hole geometry and pitch of the z-corrector. The compliance of the RCC also governs the state

transition as follows:

b7 = @&$2- K&3+  pr) , andI -
Kq, + mL (a + p)

(48)

e3 = JWb - KY (a + p). (49)
KO + z3Ky (~3  + pr)

The state (Y3a3)  must be avoided such that a transition can be made to the state

(Pm9 l34a4,  p3a3). -The repelling system , y3Aa3  > 0,  yields the following constraint at N4:

a(s~4cw4sO4  - sv4c64)  - (x4  - wx  0 c-3  )-c 4s 4 WC 4s 4s 4-se4cyJ4)  > 0. (50)( 0  w  cp

Another repelling screw: y2Aa2 > 0 is required before the peg can reach the subgoal state

(Pm, P4a4, p2a2,  p3a3).

From Eq. (26), (27), (30), (32), (43), (44), (45),  (47), (48) and (49), we can

determine the range of compliance in each transition given that the six parameters (x, y, z, 8, 4

and W) in each node (Nl to N4) and geometry of the peg and its hole is specified. The parameters

at N4 must also satisfy Eq.(50)  in order to avoid jamming while 0! lines cross.
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2

t.

Y

-----___
X

p,  or 0’__----
(0,  y(p)

P3  (XJ,O>Zj)

--I

F i g u r e  1 1  Ortho  c o n f i g u r a t i o n  a t  o n s e t  o f  w e d g i n g

5. Conclusion

In this paper, all possible contact states in an insertion task of a square peg and hole are

exhaustively enumerated based on given a range of initial position and orientation uncertainty

between the mating parts. A state network is then constructed by connecting nodes that change one

state at a time. Parts of this state-network are found to be successful insertion paths. One of those

possible paths requires a special type of compliance for eliminating the error in azimuth angle. This

so-called orthogonal compliance can be realized with a mechanism. The mechanism will react to a

given vertical contact forces by moving in an orthogonal direction, resulting in a twisting motion

about the vertical axis. By combining such a mechanism with an axisymmetric (planar) RCC, we

obtain a spatial compliance that is able to guide a square peg successfully into its mating square hole

from an uncertain initial state to a final assembled state. A prototype of this Spatial Remote Center

of Compliance (SRCC) also corrects for spatial misalignments of prismatic parts of general cross

section.

The constraints governing the state transitions along a path toward insertion are derived

from reciprocal and repelling screw systems. These constraints, resulting from engineered compli-

antes, part geometry and surface friction, mediate the state transitions; whereas, in a Petri-Net

controller, transitions are controlled by force sensing and discrete event controller schemes. Since -

state detection by force sensing is not reliable, active controller schemes may become sophisticated

in practice and difficult to perform In contrast, an SRCC using passive compliance does not need to
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detect states in real time because all possible contact states, uncertainty and constraints for jam-

ming/dead location avoidance have been predicted and included in the compliance design. The

need for recognizing intermediate states is not necessary, and constraints for other insertion paths

could be determined by a similar procedure.
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