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Abstract

This article presents a numerical method for the determination of temperature-dependent
thermal conductivity of a solid. Problems in which this method is intended for are steady-state
two-dimensional heat conduction problems. The numerical method is based on the boundary
element method, and requires the linearization of the the steady-state nonlinear heat equation by
the Kirchhoff�s transformation. Numerical tests of the method are performed by conducting simulated
experiments using a sample experiment setup. Knowledge of total applied heat input and steady-
state temperature measurements is required. The results of the tests show that the proposed method
can effectively provide an accurate solution.

1 Assistant Professor, Department of Mechanical Engineering.
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1. Introduction
Because thermal conductivity is an important property needed in thermal design and

analysis, there is an ongoing interest in determining thermal conducitivities of new materials.
Conventional experimental methods for measuring the thermal conductivity are based on the
assumptions that heat conduction can be described by the Fourier�s law, and that heat flow is
unidirectional [1]. Although the first assumption is generally valid for most materials of interest,
the second assumption usually requires careful experimental design to avoid multidimensional heat
flow that will contribute to errors. Obviously, experimental design will be more flexible if
multidimensional heat flow is allowed. In such an experiment, the boundary condition is known,
and some temperature measurements inside the material or on the boundary are available. The
resulting problem is known as an inverse problem, which can be solved for unknown thermal
conductivity. The inverse problem of determining thermal conductivity has been given considerable
interest. Previous studied problems include problems of determining thermal conductivity and heat
capacity simultaneously [2]-[6] and problems of determining only thermal conductivity [7]-[9].
Most of these problems are one-dimensional, transient problems [2], [3], [5]-[9]. Multidimensional
problems have hitherto received considerably less interest despite their greater ability to model
actual experiments.

In this paper, consideration is given to the two-dimensional problem of determining
temperature-dependent thermal conductivity. The heat conduction model used will be a steady-
state model. The numerical method that can be efficiently used to solve the resulting problem is the
boundary element method.  In the following sections, the statement of the problem will be described.
The boundary element formulation for solving the inverse problem will then be presented. Then
proposed method will be used to solve a sample problem, which models a sample experimental
setup.  Presentation and discussion of the results will follow. Finally, the paper will conclude with
suggestions for future works in this area.

2. Statement of the Problem
Consider a two-dimensional homogeneous solid, of which thermal conductivity is unknown.

The boundary of the solid is divided into three parts. The first part (Γ1) is subjected to heat input.
The distribution of the heat input along Γ1 is unknown, but the total heat input is known. The
second part (Γ2) is insulated. The third part (Γ3) is in contact with a thermal reservoir. Hence,
temperature along Γ3 is kept constant.
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Fig. 1 Heat conduction in a homogeneous two-dimensional solid

The governing equation and the boundary condition for the model shown in Fig. 1 are
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where nr denotes the unit vector normal to and pointing away from boundary, ( )1q&  is heat
flux on Γ1, and Tr is the temperature of the reservoir. Although heat flux distribution on Γ1 is not
known, the total heat input Q&  is assumed to be given.
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Additional information that will be available for solving the above equations is temperature
measurements on Γ1 and Γ2.

3. Boundary Element Formulation
Eqs. (1)-(4) are a nonlinear system, which can be linearized by the Kirchhoff�s

transformation.
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The resulting linearized system is
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The boundary element formulation for above system is given by [10]
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where ka  is coefficient that depends on position vector kr
r , and the fundamental solution
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Divide the boundary into N quadratic boundary elements, and make use of quadratic
interpolating functions to approximate variations of θ and q&  along elements. The result is a system
of linear equations relating ( )kr

rθ  to jθ  and jq&  at boundary nodes.
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where M is the number of boundary nodes, and functions φ and ψ are obtained from
evaluations of integrals in Eq. (11). Eq. (13) can now be written for all boundary nodes. The
result is a system of M linear equations. It can be solved for heat flux components ( )1

jq&  on Γ1 and
( )2
jq&  on Γ2 in terms of ( )1

kθ , ( )2
kθ , and ( )3

kθ , which are temperatures on Γ1, Γ2, and Γ3, respectively.
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where M1, M2, and M3 are the numbers of boundary nodes on Γ1, Γ2, and Γ3, respectively.

Now assume that thermal conductivity is a polynomial function of temperature.
k(T) = c0 + c1(T - Tr)  + c2(T - Tr)

2 + ... + cn(T - Tr)
n (16)

Evaluation of the intergral in Eq. (6) yields
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Substitute θ into Eq. (15), and set ( )2
jq& = 0.
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Rearrange Eq. (18) so that there are n unknowns.
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In order to solve Eq. (19) for n unknowns, the number of equations M2 must be greater
than n.

For the determination of c0, Eqs. (7) and (14) must be used. First, the integral in Eq. (5)
is approximated numerically.
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where Dj is coefficient that determines the accuracy of the numerical integration. Next,
substitute θ from Eq. (17) in Eq. (14). The resulting expression for ( )1

jq&  is then inserted into Eq.
(22), yielding the following equation.
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Since 01 cc , 02 cc , ..., 0ccn  have been determined from Eq. (19), Eq. (23) can be
solved for c0.

4. Sample Experimental Setup

Fig. 2 Schematic of sample experimental setup for determining thermal conductivity

Several experimental designs based on the model described in the previous section are
possible. One of the simplest experimental designs is shown in Fig. 2. A two-dimensional
homogeneous solid of length L and width W is subjected to known total heat input at the bottom
side. However, the knowledge of heat flux distribution is not required. The right side is insulated,
and the top and left sides are in contact with a thermal reservoir having the temperature of 0 oC.
Temperature measurements are taken from 19 sensors placed on the bottom and right sides.
Sensors # 1 - 10 are located at (x, y) = (0.1L, 0), (0.2L, 0), ..., (L, 0). Sensors # 11 - 19
are located at (x, y) = (L, 0.1W), (L, 0.2W), ..., (L, 0.9W).

To demonstrate the effectiveness of the proposed method of determining thermal
conductivity, heat flux ( )( )01 ,xq&  applied to the bottom side is assumed to be

insulated

known total heat input
but unknown distribution

T = 0

x

y

L

W
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For this particular heat flux function, the exact solution for Eqs. (7) - (10) is
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With a given thermal conductivity function k(T), exact temperatures at 19 sensors location
can be calculated. They are then used as input to Eqs. (19) and (23), which are solved for the
unknown coefficients, c0, c1, ..., and cn. Comparison between the computed coefficients and the
coefficients in exact k(T) will provide an assessment of effectiveness of the proposed method.

5. Results and Discussion
In order to test the accuracy of the numerical method, the square domain with W = L =

0.2 m was used, each of the four sides was divided into five quadratic elements, and exact
temperatures were specified at the boundary nodes. Calculated total heat input at the bottom side
was then compared with exact total heat input Q& . It was found that the L2 norm of the difference
between the numerical solution and exact solution was only around 0.08% of Q& . Furthermore, the
L2 norm of this difference monotonically decreased as more elements were used. Therefore,
computed coefficients ( )11

jkC , ( )12
jkC , ( )21

jkC , and ( )22
jkC  are expected to closely approximate the exact

values.

Numerical tests of the method will now be performed using the same computational
details as those used in checking the accuracy of the method.  In addition,  the numerical integration
in Eq. (22) is given by
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which results from the assumption of quadratic variation of heat flux along each boundary
element. The thermal conductivity function used in the numerical tests is

k(T) = 100 - 2T + 0.02T2 - 0.00004T3 (27)

The total heat input Q&  is the variable in the numerical tests. Three values of Q&  (20, 30,
and 40 kW/m) are used to investigate the influence of Q&  on the solution. For each value, a total
of five simulated experiments are performed. In each experiment, exact temperatures (Texa) at 19
sensor locations are calculated. Fig. 3 shows that as Q&  is increased, temperatures will also
increase, as expected.

Fig. 3 Exact temperatures at 19 sensors locations for Q&  = 20, 30, and 40 kW/m

Simulated temperature measurements (Tsim) are obtained by adding statistical errors (ε)
to exact temperatures.

Tsim = Texa + ε (28)

The error distribution is assumed to be Gaussian, with standard deviation σ = 0.1 oC. In
addition, data acquisition system is assumed to display temperature readings to the first decimal
point. Hence, simulated temperatures are rounded to the first decimal point. They are used as input
to the algorithm for determining thermal conductivity. The thermal conductivity is reproduced five
times in five simulated experiments for each value of  Q& . The reproduced value in each simulated
experiment is expected to be different because of the randomness of the statistical errors, which are
generated using the RANLIB package (obtained from http://www.netlib.org/random/index.html).
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Fig. 4 Differences between k and kact for Q&  = 20 kW/m

Table 1 Comparison of coefficients of thermal conductivity function for Q&  = 20 kW/m
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c0 c1 c2 c3

Actual 100 -2 0.02 -4.00 × 10-5

Experiment #1 101.2703 -2.08722 0.020926 -4.27 × 10-5

Experiment #2 99.9968 -2.02702 0.020257 -4.06 × 10-5

Experiment #3 100.3312 -2.02064 0.020149 -4.02 × 10-5

Experiment #4 102.0312 -2.04784 0.020581 -4.23 × 10-5

Experiment #5 99.83412 -2.00573 0.01999 -3.97 × 10-5

Figure 4 and Table 1 show the simulated experimental results for Q&  = 20 kW/m. It can
be seen that estimated k differs from actual k by less than 10% in the temperature range 0-
300 oC. Furthermore, estimated coefficients are reasonably close to actual coefficients.

Fig. 5 Differences between k and kact for Q&  = 30 kW/m
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Table 2 Comparison of coefficients of thermal conductivity function for Q&  = 30 kW/m

c0 c1 c2 c3

Actual 100 -2 0.02 -4.00 × 10-5

Experiment #1 100.7797 -2.02964 0.020222 -4.05 × 10-5

Experiment #2 100.2433 -2.03794 0.020418 -4.11 × 10-5

Experiment #3 100.3259 -2.00856 0.02 -3.98 × 10-5

Experiment #4 101.0022 -2.0068 0.020092 -4.04 × 10-5

Experiment #5 99.84323 -2.00167 0.020053 -4.02 × 10-5

Fig. 5 and Table 2 show the simulated experimental results for Q&  = 30 kW/m. The
difference between estimated and actual thermal values in this case is less than in the previous
case. Therefore, increasing the total applied heat input is expected to produce more accurate
estimate of thermal conductivity. To see the reason for this, let�s consider Eq. (23). If this
equation is scaled by  Q&  , it can be seen that a larger value of  Q&   reduces the effect of statistical
variation in measured temperatures ( )1

kT  and ( )2
kT , and results in a more accurate estimate of c0.

Fig. 6 and Table 3 show the simulated experimental results for Q&  = 40 kW/m. The
difference between estimated and actual thermal values in this case is even less than in the
previous two cases. This confirms the conclusion that the greater the applied heat input, the more
accurate the solution. According to Fig. 3, temperatures at 19 sensors are largest when Q&  = 40
kW/m, and smallest when 20 kW/m. This implies that using high temperature measurements will
make the determination of unknown thermal conductivity more accurate.

Fig. 6 Differences between k and kact for Q&  = 40 kW/m
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Table 3 Comparison of coefficients of thermal conductivity function for Q&  = 40 kW/m

6. Conclusions
A numerical method for determining thermal conductivity of a solid is proposed. This

method can deal with a heat conduction model in which heat flow is two-dimensional. A sample
experimental setup with such a model is proposed for experimental measurement of temperature-
dependent thermal conductivity. Unlike conventional setups, this setup should be more easily
implemented since it does not rely on the one-dimensionality of heat flow, which will require that
the applied heat input be uniform. Inputs to the numerical method include temperature measurements
along surface of the solid, where sensors are readily accessible, and knowledge of total applied
heat input, but not the heat flux distribution. Numerical tests of the method show its effectiveness
in estimating unknown thermal conductivity.

This experimental setup is just one possible way to take advantage of the ability to solve
virtually any inverse problem numerically in designing an experiment that suffers from fewer
constraints than conventional experiments. However, the proposed setup is somewhat idealized in
that it is two-dimensional. Future works in this area should involve designs of three-dimensional
experimental setups, actual experiments, and numerical studies of the associated three-dimensional
inverse problems.
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c0 c1 c2 c3

Actual 100 -2 0.02 -4.00 × 10-5

Experiment #1 99.90753 -1.99317 0.019943 -3.99 × 10-5

Experiment #2 100.8325 -2.04726 0.020441 -4.10 × 10-5

Experiment #3 99.95339 -1.98934 0.019883 -3.97 × 10-5

Experiment #4 100.2248 -1.9891 0.019931 -3.99 × 10-5

Experiment #5 100.1006 -2.00766 0.020072 -4.02 × 10-5
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