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Finite—Difference Scheme of the Incompressible Laminar

Boundary—-Layer Flow
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Abstract

A time-accurate scheme has been developed for computing the incompressible laminar
flow. The two-dimensional incompressible laminar boundary layer equations are marched in time
by using a time stepping method. The momentum equation is solved by using central differencing
in the direction normal to the body and upwind differencing in the other direction. The equation is
solved by a tridiagonal matrix system. The main objective is to develop computational procedure
which will provide accurate and stable solution when flow reversal (u < 0) occurs. The results
compare favorable with an exact solution. It is deduced that the present method is quite accurate.
The solutions showed the reverse flow velocity with the help of upwind scheme. The scheme is not
intended to replace the inverse method and should be developed as an alternative to couple with the

inverse mode.

! Assistant Professor, Department of Mechanical Engineering.
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1. Introduction

In many application, we have to consider the flow in a boundary layer where there is
either a favorable (falling) or adverse (rising) pressure gradient in the direction of the external
stream. It is found experimentally that a falling pressure gradient has a stability effect on laminar
flow in the boundary layer and tends to prolong the extent of the laminar region. Conversely, a
rising pressure gradient has a destabilizing effect and tends to promote transition to turbulent flow
in the boundary layer. Under extreme conditions with a severe adverse pressure gradient the
velocity profile may reach the point where the velocity gradient, u, is zero at the wall. Under these

conditions separation of the flow occurs.

In the standard method or “direct method” of solving the boundary layer equations, the
boundary layer flow is computed by specifying the no-slip conditions at the wall and inviscid
properties at the boundary layer edge. The parameters such as momentum thickness, displacement
thickness, wall shear stress and skin friction are obtained as parts of the solutions. A finite-
difference scheme which is efficiently solved for this type of flow may be seen in Asvapoositkul
[1]. However, near and in reversed-flow regions, direct calculation procedures cannot solve the
equations. This is because of the singularity of the standard boundary-layer formulation at sepa-

ration. So the boundary-layer equations are solved in the inverse mode.

The prediction of flow separation is the most difficult aspects of the boundary layer
approach. In recent years much effort has been devoted to develop methods for predicting separa—
tion of boundary layer. In the case when the reverse flow velocity is small compared with the outer
velocity, one can remove the instability by using a simple technique known as the FLARE ap-
proximation. In this method the calculation procedure is the same as that in the direct method
except that the streamwise convective term (e.g. u ux) is neglected when the velocity is negative
(i.e. u<0). Since the method is based on the assumption that the separation is small therefore the

solutions are acceptable if the reverse flow is less than 10% of the local outer velocity [2].

Another method to solve the boundary layer separation when the FLARE approximation
cannot be used is the so-called inverse approach. Catherall and Mangler [3] demonstrated that the
boundary-layer equations are not singular at separation when displacement thickness is prescribed
instead of free-stream velocity. This technique is known as the “inverse method”. It is the
boundary condition that differs between the direct and the inverse methods. In practice, we have to
solve the equations by iteration until the specified displacement thickness (0*) is satisfied since u

€

is not known before the boundary layer calculations are completed.
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Once a solution is obtained by the inverse method, more accurate solutions of the boundary
layer equations can be generated by using viscous-inviscid interaction methods. The best ap-
proach, at the moment, is the “interactive method” due to Veldman [4]. The essence of the
method is that both the free-stream velocity and displacement thickness are treated as boundary
condition that couple through the use of a Hilbert integral. The interactive boundary conditions that
is combination of an external velocity and a displacement thickness describes how the outer

potential flow reacts to the presence of the boundary layers.

An upwind scheme differs from the schemes described in Asvapoositkul [1] that this
scheme is based on bi-directional marching technique. It’s marching scheme changes according to
the local values of velocity (e.g. u). This is because the stability constraints for boundary-layer
flow depend upon the local values of velocities. This scheme is less straightforward to implement
than simple marching schemes but it is attractive since it provides stable solutions when the
crossflow is reversed (e.g. w<0). Many authors (e.g. Johnston [5], Steger and Van Dalsem [6],
and Vatsa [7]) have successfully computed the boundary-layer using this scheme. Detail of the

scheme will be discussed in discretization section 3 of this paper.

The purpose of this paper is to present a finite-difference scheme which is efficiently

solved for reverse flow. The scheme is described in a time-accurate base on an upwind method.

2. Governing Equations and an Exact Solution

In the case of two-dimensional motion, the boundary-layer equation and their boundary

conditions are given by [5]:

Continuity

u+v =0 (1)

X-momentum

u+ uu +vu=uu +Vu (2)
t X y e ex yy

Boundary conditions
aty=0 u=v=0 (3)

aty —» 00 u=u

When the velocity of the potential flow is proportional to a power of the length coordinate,

x, measured from the stagnation point, i.e. for

u =u_x" (4)
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The transformation of the independent variable y, which leads to an ordinary differential

equation is

L=y (5)

The velocity components are
u=u f (6)

m+1lu.yv m-1_,.
e + f
>3 8 Fmd P (™)

<
Il

We obtain the following differential equation for f({):

f”l + f f" +

me1 (1-FD=0 (8)

Its boundary conditions are

at{ =0 f=f=0 (9)
atZ - 00 ff=1
Separation occurs for m = - 0.091 [8]. Equation (8) is an ordinary differential equation.

The solution may be obtained by treating the third-order equation as a set of three simultaneous
first-order equations, and the integration was done using the Runge-Kutta method with fourth-

order accuracy. Detail of similar technique can be seen in Chow [9].

3. Finite Difference Scheme

To solve the boundary-layer equations using finite-difference scheme it is necessary to
introduce coordinate transformations. For computational convenience, equation (1) and (2) are

transformed from the physical x,y domain to a uniform §(x), N(x,y) computational domain:
Continuity equation
Exua+r]xun+r]yvn=0 (10)
X-momentum

ut tu (Ex uE * rlx un)+ v (ny un)= ue Ex ue,E +V r‘Iy (rlyn ur] * n)’ unn) (11)

Boundary conditions
atn=0 : u=v=0 (12)

atf - o0 : u=u
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Upwind Scheme

The upwind scheme is second-order accurate in space and first-order accurate in time.

The scheme is applied in the momentum equation (11). The central difference operator (d) is

used in the n-direction and the forward difference operator (A) is used in time. For the &-

direction, the backward difference operator ([1) is used when the value of u is positive and the

forward difference operator (A) is used when the value of u is negative. Using a notation that
1 n+l

space-time indices are not written unless changed (e.g., u = u;, u"" = u'", etc.), the first-order

time-accurate method may be written as:

X-momentum

Eu+[Eu EU-E U as e
(An u) + (T||)(DE u) + (T||)(A€u) +un (6r1 u" D+ v n, (6n u™h)
=uw & Hu)+vnn @ u)+vnn @ v (13)
The resulting difference equation can be written in the form
auf+bu" +culf=d (14)
_ _ _ \Y
where a=-1 u r]yv +r]yr]ynv 2 nynyA_r]
an v
b_2An+4nyny AN
c=n u+n v-nn,v-2nn >
X y y 'y y y Ar]
+ u—jig,u
dz_ﬁ(EXU—EXUD (3u - 4u +u_)_ﬂ(zx—|zx|)
AE 2 i-1 i-2 AE' 2

An An
(—31.1 +4ui+1 B ui+2) * ZE u+ A_E'ue Ex (Sue - 4ue,ifl * ue,if2)

This set of equations can be solved for the unknown u"*" by a tridiagonal matrix. Once u""'

+1

is available, v""" is obtained from continuity equation in the discretised form.

An 1 Nx
n+1 +1 n+l 1 1 _ n+1 1
V= Vi - 0-5A—E — @ - Ul - ) - e - Ul (15)
ny y
When i = 1 equations (13) and (15) are calculated with first-order accurate in A&. The
solution at time n+1 at each downstream location can be achieved form the above equations. For
steady flow solutions, the process is repeated until the difference between two successive values of

u and v, for {-N plane, be less than a specified tolerance (i.e. Cu™' - ul® €). Therefore, iteration

is required. In practice it is more efficient to use a relaxation factor for updating the solutions.
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4. Results and Discussions

The finite-difference scheme discussed in the previous section was used to obtain the
solutions of the potential flow given by u =, x™ for both positive and negative of m. If m is
positive, the pressure gradient is negative or favorable, negative m denotes an unfavorable positive
pressure gradient, and m = O denotes no pressure gradient. For laminar flow, the Reynolds number

u,L
Re = 3 = 10°, where the characteristic length L = 1 m and u_ =1 m/s. In this calculation the

convergence criterion was taken as 1x10™*. A 101x101 grid point of x and y-directions was used.
The calculations were started without using Blasius solution but specifying the flow with no-slip
at wall. The solutions from the present method are compared with those obtained by an exact
solution [8]. It should be noted that the separation obtained from the present method occurs when
m = -0.094. Fig. 1 shows a comparison of velocity profiles obtained by the method and those

obtained by an exact solution.

As we can see from the Fig. 1, the calculated results in general agree quite well with an
exact solution. For favorable pressure gradient, the value of m was set equal 0.5. For adverse
pressure gradient, the value of m was set equal -0.90 since this is the lowest value that the
solution can be obtained from the analytical method. Because P (i.e. u ue’x) is positive, the
velocity gradient U increase initially with increasing distance from the wall before reaching a
maximum value at some intermediate value of I and subsequently falling off to zero at the outer
edge of the boundary layer. Under this condition with a severe adverse pressure gradient the
computations required more time steps than those in favorable pressure gradient to reach an

acceptable level of convergence.

6 4 6
Present method
54 Analytical solution 51
4 4 -
3 3
m =-0.090
2 24
m=0.0
Present method
1 14
m=0.50 Analytical solution
0 T T T T 0 T T T t T T
0.0 0.2 0.4 0.6 0.8 1.0 -4 -3 -2 -1 0 1 2 3
u v |ulL
Ue u \Y

Fig. 1 Comparison of velocity profile for u = UE x" from the present method and that from an exact solution.
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Fig. 2 Wall shearing stress

Fig. 2 shows the excellent agreement between the skin friction obtained from the present
method and that from the analytical method with small exceptions near the leading edge of m =

-0.90. The skin friction coefficient is calculated from

V@u%
.

f 1,2
2 ue,x

This is compared with the exact skin friction coefficient

+
[EN
<

Ch
c = 2f O—
f gZu

In general, this agreement is within acceptable accuracy.

The results in Fig. 3 show that the numerical method has no difficulties in computing the
region of reversed velocities. However the method shows poor convergence when the flow is
reversed. Theoretically, the method is inaccurate beyond the flow separation point when the
reverse flow is high. The present method is not intended to replace the inverse method but rather

to demonstrate the robustness of the method to cope with a flow reversal.
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Fig. 3 Computed velocity profile for reversal flows.

5. Concluding Remarks

Concepts from a time-accurate for two-dimensional boundary-layer have been used to
develop an upwind scheme for incompressible laminar flow. This scheme appears applicable with
flow reversal is present. Computational results on a wide variety of flow situations on a flat-plate
are validated and shown good agreement with analytical results. The scheme is robust and should
be developed as an alternative to couple with the inverse method, and to verify, for complex flow

such as three-dimensional /turbulent flow.
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Nomenclature
c, skin-friction coefficient
i, ] index of the grid point system
n time step, index of time
t time
u, v velocity components
X,y Cartesian co-ordinate
0 central difference operator

An, A&, AN grid spacing in time,  and N co-ordinates
A forward difference operator

i backward difference operator

€ convergence criteria
¢

Blasius similarity variable
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Subscript
e outer edge of the boundary layer
i, ] denoting co-ordinate direction
Xy Vs & N derivative with respect to x, y, &,
00 upstream conditions
Superscript

' differential equation
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