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An Alternative Method for Calculating Mixed Surface Integrals
in Solving the Three—dimensional Potential Problem by the

Boundary Element Method

Somchart Chantasiriwan '

Thammasat University (Rangsit Campus), Khlong Luang, Pathum Thani 12121

Abstract

A mixed integral consisting of a weakly singular part and a non-singular part can be
evaluated by separating it into the two parts and treating them differently. This paper presents the
method that uses an analytical or semi-analytical technique for calculating the weakly singular
integral, and the two-dimensional Gaussian quadrature for calculat ing the non-singular integral.
It also shows how the separation of mixed integrals found in three-dimensional potential problems
can be done. The effectiveness of the proposed method is demonstrated by comparing the solutions

for a sample problem obtained from this method and from the variable transformation method.

! Assistant Professor, Faculty of Engineering.
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1. Introduction

A mixed integral consists of a weakly singular part and a non-singular part. An example

of one-variable mixed integrals is

1
I\/1+xlnxdx
0

It can be seen that the integrand becomes infinite at x = 0. Numerical integration of this
integral using the one-dimensional Gaussian quadrature will yield an inaccurate result because the
integrand is a singular function (i.e. its value is infinite within the limits of integral), which the
Gaussian quadrature cannot handle well. Recommended method of evaluating this integral nu-
merically [1] makes use of the one-dimensional logarithmic Gaussian quadrature. However, there

is another way to calculate this integral. Taylor series expansion of v/1+X is
V+x= 142+
2

or

1+ x=1+R(x)

where P1 (x) represents a polynomial that has zero coefficient for term of order 0. There-

fore,

}\/1+ X Inxdx = }Inxdx +J1’(«/1+ X —1)Inxdx
0 0 0

Note that the first integral on the right hand side can be evaluated analytically:

1
Inxdx = -1
Jo'nxx

The second integral is non-singular, and can be evaluated accurately by using the one-
dimensional Gaussian quadrature. This method of calculating the mixed integrals may give better

results than the method that uses the one-dimensional logarithmic Gaussian quadrature.

In this paper, two-variable mixed integrals are considered. A conventional method like
the variable transformation method [1]-[4] deals with mixed integrals by using the Jacobian of
transformation to cancel out the singularity before applying the two-dimensional Gaussian quadrature.
However, an alternative method analogous to the method applied to the above one-variable mixed
integral is presented here. Application of this method to a two-variable mixed integral yields a

weakly singular integral, which can be evaluated analytically or semi-analytically, and the non-
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singular part, which can be evaluated numerically by using the two-dimensional Gaussian quadrature.
The following sections describe analytical and semi-analytical evaluations of two-variable weakly
singular integrals; separations of a two-variable mixed integral into a weakly singular part and a
non-singular part; the variable transformation method of calculating two-variable mixed inte-
grals; and the boundary element formulation of the three-dimensional heat conduction problem.
Finally, the proposed method is compared with the variable transformation method in solving a
sample problem by the boundary element method. It is shown that the proposed method gives a

better result.

2. Weakly Singular Integrals

() (@) (0} (@)
A’ A A’ A’
1 1 1 0.5
0.5
o) > G, < » O
0 1o 1 05 0 05 | v
(a) (b) (c) (d)

Fig. 1 Surface of integrals and coordinate systems for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4

Weakly singular integrals _Us f,(0,,0,)d0,do, (i = 1, 2) found in the three-dimensional

potential problem have as their integrands the following functions:
1
£(0,0,) = — 2 (1)
\/Aol +Bo,0, +Co;,

Do? + Eo,0, + Fo?

3/2
Ac? +Bo,0, + Cog)

(2)

f(o,0)=
2 1 2 (

The origin of the (01, 02) coordinate system is on the boundary of the surface S of the
integrals. Although the integrands are infinite within the surface, these two integrals are finite.
Their values can be obtained by a combination of the analytical and numerical techniques. The

following formulas for indefinite integrals will be used for this purpose.

iIn(b+2ax+2\/a2x2+abx+ac) (3)

1
— dx=
J’\/ax2+bx+c Ja
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X e - 2(2c +bx)
I(ax2+bx+c)3/2 (4ac—b2 Nax? +bx +c
X2 2bc - 2(2ac - b’ )x
I 7 x=
(x® +bx + cf a(sac - b?Nax® +bx+c

+

aTllzln(b+ 2ax + 2v/a’x? +abx+ac)

309

(4)

(5)

where a Z 0. If the boundary element used is the six-node triangular element, there will

be 4 cases of weakly singular integrals, corresponding to 4 different locations of the origin of the

(01, 02) coordinate system in the triangular surface S. Fig. 1 illustrates these cases. In each case,

weakly singular integrals in Egs. (1) and (2) can be evaluated analytically using the formulas in

Egs. (3)-(5).
Case 1

(o218 1

do,do, _

O%I—\

J; JAd? +Bo,0, +Ca?

1 OB [aA+B+CO  [B AH
ﬁ%n%+2+2 TE'_"]B'S”\E%

q;

1 2B* -4AC +2BC

11
1[ a[ (Aof +Bo,0, + Ccr§)3/2

2B* - 4AC + 2BCa,

1
+-! AlaAc - B?)/A+Ba, +Co?

do,

! 1InEB02+2A+2\/A2+ABGZ+AC0§%
A?”zl § B+2A+2/A°+AB+AC

10,

0,0,

2

NI

do,do, - -
TTPT A Alaac-B2NA+BHC

'<[ ‘! (Acrl2 +Bo,0, +Co

10,

o

2
2

)3,2 do,do, = (

4AC-B?) (4AC-B2]JA+B+C
+2/C? + BC+AC

'(I: J; (Aof +Bo,0, + chg)“

2BJVA

2B

3/2

2 _AAC+2AB

- +
claac-B?) claac-B2NA+B+C

do.do, = Cl In%3 e
=

(6)

(7)

(8)

(9)
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Case 2

110, 1 1 % B \/KD =
do,do, = ——=(Qn +2,| <10
-([-([ JAd? +Bo,0, + Co? o250 JC§ %S CE'_ H
1. 0B A+B+C[], [B-2C 0
+flln§6 2%51+2+2\/§T%51+§T%71+1éd(51

11-0, 2

[ ot o0, cof* %~ 1=l 2vacl)
1 10,

IIn[Bcz ~2Aa, +2A+2,/ACo?2 + AB(1- g, ), + All- 0?) ]d02

3/2

j.l].’l 0,0, do.do. - N
0 0 (Acf +Bo,0, +C(5§)3’2 . <4AC -B? j

p 2(2Ac, - Bo, +B)
-!;(4AC -B)/Ac? + Bo,(1-0,)+Cll-0?)

do,

11-0; 2

J’J’ (Ac +Bcc +Co)3 > do,do, = C3’2{1 In[B+2\/E]}
1 12

+ WJ’In[Bc1 -2Co, +2C+ 2\/AC()'f +BC(L-0,)o, + C(l— Gf)]dol
0

Case 3
0008 0 1 1 01, MAC-B’O0 O
I J' do,do, = - %I E‘I—D‘l In20
05 0 \/ Aa’ +Bo,o, +Co; Jc O C* [ 0

+—!|n%— 2@5 +1+2\/w% Bﬁ% —Edffl

05 1-0, 0.2
1

05 I (Ac1 +Bo,0, +Cao?

do,do, -
)32 1 2 =

(aAC +2BC-2B%)o, + B2 -2AC

1
J’ do,
b Alanc-B2)/Co? +Bo,(05-0,)+ A(05-0, )

! 2BCo, - B® + 2AC

- d
[ AlaC -B?)/Co? —05Ba, +0.25A °

1 Bo, ~2A0, + A+ 2,/ACa? + ABo,(1-0,)+ A’(1-0,)
A z[ g Bo, - A+ 2,/ AC02 - 0.5ABa, +0.25A7

g
do,
H

(10)

(11)

(12)

(13)

(14)

(15)
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0.5 0.5-0;
J, J. 0102 = do-zdo'l = LAZ —
05 (Acvl +Bo,0, + Coz) 4AC-B
0.5
4A0, —-2Bo, +B

do,

-or.s (aac-B2)/Ac? +Bo,(1-0,)+Cli-0,)

05 1-0;

2
J’ ( % —do,do; = c { InvV4AC - B? +|n2+1]

154 (Ac? +Bog, +Co?) 32

_ 2BJA
claac-B?)

1 05
+— [ InEBo, -2Co, +C +2,/AC0? + BCo,(0.5-0,)+ C(0.5-0, ) Blo
C3/2 _Is % 1 1 1 1 1 1 % 1

Case 4

05 -0y 2

= do,do, = —= At inPAC =B D 14 ino
2 1 =
—0A5—0A5\/Aof+80102 +C0§ \/_DZ ] Cc? U O
05 2 _ +cO
i‘[ n[-)— 1+2\/4A01 2Bo, CD—Zan%ﬁl
C ENs 4C A H

05 -0y 2
(0]
1

s _Jo's (Aof +Bo,0, + Cog)3

—do,do, = 3,Z{In\/4AC B? -In2- ]}
A

2BC+4AC-2B° % 2BCo, + 2AC - B’
AlaAac-B*NA-B+C I, Al4AC - B2)\/Co? - 05Ba, +0.25A

05 -0; 0.10_2 dc B _ 2(2A_ B)
—'!)’5 '(J)’s(Acl +Bo,0, +Cao} )3 b (4AC—52 NA—B+C
o 4Ac, - B G,

I, (4AC - B2)/Ac? -0.5Ba, +0.25C

05 -0y 2

92 )mdczdcl_ 3lz{ln\/4AC B? —In2- ]}
C

05 —'!5 (AGf + Bo,0, + Ca’

2AB+4AC-2B> % 2ABo, +2AC - B
claac-B2NA-B+C _J:_Sc(4Ac - B?)/Ac’ - 0,580, +0.25C

do,

do,
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(16)

(17)

(18)

(19)

(20)

(21)
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Note that one-variable integrals in Eqs. (7), (10)-(21) are non-singular integrals; their
integrands remain finite within the limits of the integrals. Hence, they can be evaluated numeri-

cally by using the one-dimensional Gaussian quadrature.

j’f(x)dx= InZgwif(xi) (22)

where x is a Gauss point. w_is the weight, and n is the number of Gauss points.
i 1 g

3. Mixed Integrals

Mixed integrals in the boundary element formulation of the three-dimensional potential
problem have the following forms:

.Us % (01’ 0, )dUldOZ =

1+R(0,,0,)
IJ: JAd? +Ba,0, +Ca’ + Ry(0;,0,)

do,do, (23)

Do? + Eg,0, + Fo? + P,(0,,0,)
A? +Ba,0, +Ca’ + P,(0,,0,)f

—do,do, (24)

Hsgz(ol,oz)doldoz = HS(

where P (01, 02) represents a polynomial that has zero coefficients for terms of order n

-1 or lower. The integrand in Eq. (23) can be separated into two terms as follows

1+P 1

= +
\/Aof +Bo,0, +Co’ + P, \/Aof +Bo,0, +Co; + P,

R

(25)
\/Aof +Bo,0, +Ca; +P,

The second term on the right hand side of Eq. (25) does not become infinity as (01, 02)
equals (0, 0) because the polynomials in the numerator and the denominator are of the same
order. Therefore, the integral of this term is non-singular. The first term on the right hand side of

Eq. (25) can be rewritten as

1 _ 1 \/ Ac? +Bo,o, +Cao?
JAc? +Bo,0, +Ca? +P, JAd? +Bo,0, +Co? | Aoy +Bo,0, +Coj +P,

1 P.
= 1- 3
JAG? +Ba,0, +Co? \/ Aoy +Bo,0, +Ca; + P,

(26)
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But P3(01,02) << ACIl2 + Bo,0, +C0§ in the limit (01, 02) — (0, 0). Therefore,

. P P
lim [1- 2 =1 3 27
(01,02)4(0,0)\/ Ac? +Bo,0, +Co2 +P, 2(Ac? +Bo,0, +Co2 +P,) (27)

Combining Eqgs. (26) and (27) results in
1 . 1
\/Aof +Bo,0,+Co2+P, ./Ad? +Bo,0, +Ca?

1 H P,
> 5 (28)
2\/A012 +Bo,0, +Cao; BAol +Bo,0, +Co; + PR,

The second term on the right hand side of Eq. (28) is finite as (0'1, 0'2) approaches (0,
0) because the polynomials in the numerator and the denominator are of the same order. Conse-
quently, the integral having this term as its integrand is non-singular. This leaves the integral of
the first term as the only weakly singular integral. The original integral can now be written as the
sum of the weakly singular part and the non-singular part.

1
HS JAc? +Bo,0, + Co?

1
, - d 9
.HS %1(01 o2) \/Aof + 80102 + COE %01 0, (2 )

Similarly, it can be shown that

do,do, +

.[IS (o} (01: 0, )dOldGZ =

Do? + Eo,0, + Fo,
.US 9,(0;,0,)do,do, = .[IS (Aofl-l- BO'l(;Z 1 Co? )23,2 do,do, +

Do? + Eo,0, + Fo,
.HS %2 (01,0;) - (A0(251+ Bcoéoi_ Cc:)zz/z o,da, (30)
1 1~2 2

The first integrals on the right hand sides of Egs. (29) and (30) can be evaluated by the
technique shown in the previous section, whereas the second integrals can be computed by using

the following transformation

o= %(1+p1)(1—p2) (31)

o - %(1+pz) (32)
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As a result, the surface of the integral is changed from right triangle to square.

[J9(o:.0;)do do, = J’jg(pl.pz)%(l—pz)dpldpz (33)

and the two-dimensional Gaussian quadrature can be applied.

11 ng Ny

ffraay - 55

1=1 J=1

ww, T (x.y,) (34)

4. Variable Transformation Method of Evaluating Mixed Integrals

The mixed integrals in Egs. (23) and (24 ) can be calculated [1] by dividing the domain
of the integrals into triangles of which vertices are the locations of singularity (i.e. the integrand

becomes infinite). Fig. 2 shows how a six-node triangular element is divided when the point of

singularity is at each of the 6 nodes.

singularity at local node singularity at local node
number 1,3 or 5 number 2
(no division)

singularity at local node singularity at local node
number 4 number 6

Fig. 2 Division of six-node triangular element in a conventional method of evaluating mixed integrals

when the point of singularity is at each of the 6 local nodes

Mixed integrals over a triangle of which one of its vertices is the location of singularity

can be done by transforming the triangle into a square as shown in Fig. 3. The transformation

formulas are
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1 I I
O'1= Z(1+01Xb1+ai+02(b1_a1)] (3%)
02= 411(1+0-’1ng ta, +0'2(b2 _aZ)] (36)
)
<A52 (b, b,) 1A

> < > o

(ap az)
» G,

1
v

Fig. 3 Transformation of triangle in (01, 02) coordinates into square in (0'1, 0'2) coordinates

After transformation, integrals in Eqgs. (23) and (24) becomes

11
g,(0,, d do, = ((9,l0;,0,)J'(0;,0, Ho'do’ (37)
JI 101 0102 Il:[ll(l 2)(1 2)112
[[,9:(0:.0,)do,do, = J’j’gz 03,0, )'(0},0, Hoyda, (38)

Since J' — 0 as g, and g,— integrals on the right hand sides of Egs. (37) and (38)

are non-singular and can be calculated using the two-dimensional Gaussian quadrature (Eq.

(34)).

9. Three-dimensional Potential Problem

For clarity, the potential problem to be considered is the steady-state heat conduction

problem. The boundary integral equation for the three-dimensional heat conduction problem is [1]

aJ(ﬁ):J' () r—-7)dA - IT ) ROG(7 -1, )dA (39)

where i is the global node number, T is temperature, ( is heat flux entering the domain in
the direction normal to the surface of the domain, k is thermal conductivity, A is the unit normal
vector pointing outward from the surface of the domain, &; is coefficient that depends on position

vector [;, and the fundamental solution G is
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(40)

~ 1
4k F — ;|
Suppose surface S is divided into M boundary elements. Multiplying Eq. (39) by k gives

ka,T(F ;lq r—ﬁ)dA—Mng(F) KAOIG(F -, )dA (41)

Next transform variables of integrals to natural coordinates (S1’ sz), making use of the

Jacobian of transformation J (sl, s2).

ka,T(F ;jj JG(r =7 )3(s. s, Jdsds, -
Zﬂsk F)KACOG(F - 7 (s, 5 )dsds, (42)

T and ( can be related to temperature and heat flux components at boundary nodes by

interpolating functions.

) = 2N|(51’52)qk,| (43)

) = 2_ N| (Sl’SZ)Tk,I (44)

where [ is the local node number, and m is the number of nodes in an element. Inserting

Egs. (43) and (44) into Eq. (42) results in
ka,T (1 ;Zq“jj G(F -7)I(s,5)Ni (5,5, )dsds, -
M m ~
> > Taff s, KOG -7)3(s, )N (s, s ds, (45)
There are two types of mixed integrals in Eq. (45). The first type occurs when the global

node number i is at the same location as the local node number I in element k. The corresponding

mixed integral is

dsds, (46)



NINTITBUaWNU 5. TN 25 UUN 4 aanAN-5UNAN 2545 317

The second type occurs when the global node number i is in element k, but is not at the

same location as the local node number [ in element k. The corresponding mixed integral is

B | e 4,71 [X X+ (y=%)3, +(z-2)3N (s,5.)dsds,  (a7)

where J, = Oy 0z _ 9y o0z (48)
0s, 0s, O0s, asl
0z dx 0z Ox
J, = ——
Y 0s 0s, 0s,0s, (49)
ox @ ox @
3, = VY (50)

z 631652 aszasl
J o= JIE+32+02 (51)

In order for |, and |, to be in the form of Egs. (23) and (24), the (51’ sz) coordinate
system must be transformed to an appropriate coordinate system (O » 0'2), which depends on the

type of boundary element and the local node number. As a result of such transformation,

1+P(0,,0,) if global nodei isat the samelocation
aslocal nodel in element k

N =0 . o . (52)

€0, +do, + P,(0,,0,) if global nodei isat differentlocation

H fromlocal nodel in element k
X=X = €,0, 16,0, + Pz(cl’oz) (53)
Y-y = ey101+ey202+|32(01'02) (54)
z-z = e,0,+e,0,+PR(0,,0,) (55)
F-7 = \/A0f+Boloz+Co§+P3(01,02) (56)
A = eil+e§1+e§1 (57)
B = 2(exlexz + eyleyZ + eZleZZJ (58)
C = eiz+e§2+e§2 (59)
J, = €,e,—¢€,e,+R(0,.0,) (60)
J, = €€, —€,e, +P,(0,,0,) (61)

J = e:ae'yz _e;ze’yl + Pl(o-lio-z) (62)
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Coefficients €, €, € and €, (£=X,Yy,z) depend on the type of boundary element

and the local node number. For the six-node triangular element, their values are shown in Table 1.

31
2
4 4
5 6 1

Fig. 4 Local node numbers in six-node triangular element

Table 1 Expressions of 0., 0, €, €. eél and eéz for the 6-node triangular element

I 0, 0, € € € | &
1] 1-5 &) —38,— &5+ 48 48y —8a+&— 4 | —€u | &,
2 S1_0-5 S2_0-5 21"' 252_224"' Es_ 222"' 23_254"' ES_ € S
22.5 226
3| 1-5 S =3+ 48, - &5 L tAL-A,t & | e, | T8y
4| $-05 St &5~ &s <+ 26,-28,-& | e, €1
+ 2{6
5 St S &y =385+ 48 =+ 4, -3 € | &
6| 5-05 S &1~ 8 2,-8+28,-&— | €, | &,
28,
Elv 22 ) oeeny Eﬁare coordinates of local node numbers 1, 2, ..., 6, respectively. The arrangement of 6 local node

numbers in a six-node triangular element is shown in Fig. 4. Coefficients C and din Eq. (52) also depend on the type

of boundary element and the local node number. For the six-node triangular element, their values are given in Table 2

Table 2 Expressions of ¢ and d for the 6-node triangular element

Global node i is at the same location as local node |
=1 =2 =3 =4 =5 =6
N, c 1 0 0 -1 1
d 0 -1 -1 0 0
N, c 0 0 0 0 0
d 4 4 2 0 2
N, c 0 0 1 0 0
d -1 1 0 -1 -1
N, c 0 -2 4 0 0
d 0 -2 -4 4 2
Ng c -1 1 -1 -1 -1
d 1 1 1 -1 -1
Ng c 4 -2 0 0 4
d -4 -2 0 2
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6. Comparison between the Variable Transformation Method and
the Alternative Method

The alternative method of evaluating mixed integrals is to be compared with the variable
transformation method described previously. The boundary element method is used to solve the
heat conduction problem illustrated in Fig. 5. The hollow cylinder has the inner radius of 4, the
outer radius of 12 and the length of 3. The temperature of the inner surface is 100In(4), and the
temperature of the outer surface is 100In(12), whereas the two ends are perfectly insulated. The
material of the cylinder has the thermal conductivity of 1. Due to the symmetry of the problem,
only a quarter of the cylinder (section with line texture) is considered. The six surfaces of the
section are divided into a total of 76 six-node triangular elements. The distribution of boundary

elements among the six surfaces is indicated in Fig. 5.
T =100In(12)

T = 100In(4) //;,/%/ 24 ‘7”"6'“3

5

insulated 6 elements

8 elements -

24 elements

8 elements
Fig. 5 Sample heat conduction problem
The exact solution for this problem is
T(r) = 100In(r) (63)

where r is the radial distance from the centerline of the hollow cylinder. This means that
the uniform heat flux of 25 leaves the inner surface, and the uniform heat flux of 8.3333 enters
the outer surface. In addition to the exact solution, numerical solution to the problem can be
obtained by using the boundary element method. If the boundary condition for the problem in-
cludes temperatures on the inner surface and the outer surface of the problem domain as shown in
Fig. 5, and zero heat flux on other four surfaces, heat flux on the inner surface and the outer surface
can be calculated. The accuracy of the numerical solution is estimated by computing the following

€Iror.
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8:

qe(act J

where ¢ is heat flux component at node i on the inner surface or the outer surface, and
Oocact; 18 the exact heat flux component at the same node. Average error € is given by
Nig

1
E=—) ¢, 65
e (65)

io 1=
where N is the number of nodes on the inner surface and the outer surface.
10

Average errors are calculated for numerical solutions obtained from the boundary element
method with the evaluation of weakly singular integrals performed by the variable transformation
method and the alternative method. Table 3 shows that increasing n results in less average errors

g

for both methods. Recall that n is the number of Gauss points in numerical integration of one-
g
variable integrals (Eq. (22)), and ns is the number of Gauss points in numerical integration of
two-variable integrals (Eq. (34)). When average errors are compared at the same n , it can be
g

seen that the proposed method yields more accurate solutions.

Table 3 Comparison between the variable transformation method and the

alternative method

Average error (%)
ng Variable Transformation Alternative Method
Method
2 21.3211 5.584562
4 4.058598 0.326068
6 1.593568 0.069178
8 0.918393 0.063236
10 0.635773 0.061101

7. Conclusions

The alternative method calculates a two-variable mixed integral by separating it into a
weakly singular integral, which can be treated analytically or semi-analytically, and a non-
singular integral, which can be treated numerically with the two-dimensional Gaussian quadrature.

Mixed integrals under consideration are found in the boundary element formulation of the three-
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dimensional potential problem. The variable transformation method for calculating these integrals
eliminates the singularity of integrands and changes the surface of integrals to a square, for which
the two-dimensional Gaussian quadrature can be applied. The alternative method and the variable
transformation method are used to evaluate mixed integrals in solving a three-dimensional heat
conduction problem with the boundary element method. It is found that the alternative method

yields more accurate results.
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