ผลของความถี่และสนามโพลิงที่มีต่อสมบัติเชิงไฟฟ้า และปรากฏการณ์ PTC ของวัสดุ BaTiO₁+0.9ZrO₂

ธงชัย พันธ์เมธาฤทธิ์¹ กิ่งกานด์ เปาะทอง² และ วราภรณ์ อนันดพรพาณิชย์³ มหาวิทยาลัยสงขลานครินทร์ หาดใหญ่ 90112

บทคัดย่อ

ก้อนสารรูปจานเตรียมขึ้นมาโดยวิธีเทคนิคเซรามิกมาตรฐาน สารที่เตรียมได้มีสูตร BaTiO₃+0.9ZrO₂และ มีสีขาวเหลือง ผลการวัดสมบัติของสารในสนามไฟฟ้าสลับพบว่าค่าอิมพีแดนซ์ (Z) ความนำไฟฟ้า (G) ความจุ ไฟฟ้า (C) ตัวประกอบการสูญเสีย (D) และตัวประกอบคุณภาพ (Q) ที่ความถี่ (f) 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz มีค่าดังสมการ Z = 45.64f^{0.9013}; G = 0.004f^{0.5619}; C = 3.3468f^{0.0872}; D = 0.1877f^{0.3516} และ Q = 5.3587f^{0.3496} อิมพีแดนซ์ที่ความถี่ในช่วง 1 kHz ถึง 80 kHz มีค่าลดลงอย่างรวดเร็วในช่วงความถี่ 1 kHz ถึง 20 kHz สารกรองแรงดันไฟฟ้าผ่านได้ดีในช่วงความถี่ 200 kHz ถึง 320 kHz การโพลิงสารจะใช้สนามไฟฟ้า 3.96 kV/mm เป็นเวลา 48 วินาที ความต้านทานไฟฟ้าก่อนและหลังโพลิงมีค่า 11,900 MΩ และ 24.075 kΩ ตาม ลำดับ ผลการทดสอบปรากฏการณ์ พีทีซี (PTC Effect) หลังโพลิงพบว่าความต้านทานไฟฟ้าเพิ่มเร็วมากในช่วงอุณหภูมิ 80°ช ถึง 82°ช โดยมีอัตราการเพิ่มขึ้นของความด้านทานไฟฟ้า 1205.39 kΩ/°ช อุณหภูมิคูรี (T_.) มีค่าประมาณ 80 °ช ก่อนโพลิงนั้นสารมีลักษณะเป็นตัวเก็บประจุและหลังโพลิงแล้วสารมีลักษณะเป็นเทอร์มิสเตอร์แบบ PTC

คำสำคัญ : สมบัติของสารในสนามไฟฟ้าสลับ / การกรองแรงดันความถี่สูงผ่านกระบวนการโพลิง / เทอร์มิสเตอร์แบบ PTC

¹ รองศาสตราจารย์ ภาควิชาฟิสิกส์

² นักศึกษา ภาควิชาฟิสิกส์

³ นักศึกษา ภาควิชาวิทยาศาสตร์ทั่วไป

Effect of Frequency and Poling Field on the Electrical Properties and PTC Effect of BaTiO₃+0.9ZrO₂ Material

Thongchai Panmatarith¹ Kingkan Poatong² and Varaporn Anuntapornpanich³ Prince of Songkla University, Hat Yai 90112

Abstract

Disc-shaped pellet's samples were prepared by Standard ceramic techniques. Sample formular was $BaTiO_3+0.9ZrO_2$ and had yellow-white color. When the sample was measured in ac electric field, impedance (Z), conductance (G), capacitance (C) dissipation factor (D) and quality factor (Q) at frequency (f) 100 Hz, 120 Hz, 1 kHz, 10 kHz and 100 kHz were in the following equations : $Z = 45.64f^{0.9013}$; $G = 0.004f^{0.5619}$; $C = 3.3468f^{0.0872}$; $D = 0.1877f^{0.3516}$ and $Q = 5.3587f^{0.3496}$. Sample impedance decreased rapidly in 1 kHz to 20 kHz interval. Sample could filtered high frequency voltage in 200 kHz to 320 kHz interval. Sample was poled with electric field 3.96 kV/mm for 48 s , resistance before and after poling were 11,900 M Ω and 24.075 k Ω , respectively. Sample showed PTC effect after poling, resistance increased very rapidly in 80 °C to 82 °C interval with resistance increasing rate equal 1205.39 k $\Omega/$ °C. Curie temperature (T_c) was about 80 °C. Sample was capacitor before poling and PTC thermistor after poling.

Keywords : Material Properties in AC Electric Field / High Pass Filtering / PTC Thermistor

¹ Associate Professor, Department of Physics.

² B.Sc. Student, Department of Physics.

³ B.Sc. Student, Department of General Science.

1. บทน้ำ

สมบัติของสารในสนามไฟฟ้าสลับมีความสำคัญต่อการนำสารที่เตรียมได้ไปประยุกต์ใช้งานที่ความถี่ต่างๆ ไฟฟ้าเฟอร์โรสามารถนำไปประยุกต์ใช้งานเป็นอุปกรณ์กรองแรงดันความถี่สูงผ่าน สนามไฟฟ้าแรงสูงมีผลต่อการ เปลี่ยนสมบัติเชิงฟิสิกส์ของสารและปรากฏการณ์ PTC ที่เกิดขึ้นในเทอร์มิสเตอร์แบบ PTC (PTC thermistor) มี ความสำคัญต่ออุตสาหกรรมอิเล็กโตรเซรามิกส์

ก. ไฟฟ้าเฟอร์โร (Ferroelectricity)

การค้นพบไฟฟ้าเฟอร์โรใน BaTiO₃ ในปี 1940 นำไปสู่การทำตัวเก็บประจุที่มีค่าคงที่ไดอิเล็กตริกสูง [1] ไฟฟ้าเฟอร์โรเกิดจากโมเมนต์ขั้วคู่ไฟฟ้ามีทิศทางขนานกัน บริเวณที่มีโพลาไรเซชันทิศทางเดียวเรียกว่า โดเมน (domain) BaTiO₃ มีโครงสร้างผลึกแบบเพอรอฟสไกต์ (perovskite structure) โดเมนจะโตขึ้นเมื่อสารได้รับสนามไฟฟ้าแรง สูงหรือทำการโพลิง (poling) หลังจากที่สารผ่านการโพลิงพบว่าค่าคงที่ไดอิเล็กตริกมีค่าเพิ่มขึ้น การมีโพลาไรเซชันค้าง ในสารเนื่องจากผลของโพลิงสามารถพิจารณาได้จากวงการล้าเฟอร์โรอิเล็กตริก ไฟฟ้าเฟอร์โรนี้มีความเกี่ยวข้องกับ การกรองแรงดันไฟฟ้าความถี่สูงผ่าน

ข. ปรากฏการณ์ PTC (PTC Effect)

เทอร์มิสเตอร์แบบ PTC (positive temperature coefficient thermistor) คือ ตัวต้านทานที่มีความ ด้านทานไฟฟ้าเปลี่ยนแปลงในขณะที่อุณหภูมิเปลี่ยนไป เทอร์มิสเตอร์แบบนี้จะมีค่า **X** หรือ PTCR (positive temperature coefficient of resistance)สูง [2] ค่า **X** มีความเกี่ยวข้องกับอุณหภูมิคูรี (Curie temperature, T)ซึ่ง เป็นอุณหภูมิที่สารเปลี่ยนเฟสจากเฟอร์โรอิเล็กตริกไปเป็นพาราอิเล็กตริก อุณหภูมิคูรีเกี่ยวข้องกับโครงสร้างจุลภาค (microstructure) ความต้านทานไฟฟ้าของเทอร์มิสเตอร์แบบ PTC ที่มีค่าเพิ่มขึ้นอย่างรวดเร็วในขณะที่อุณหภูมิ เปลี่ยนไปเกิดจากผลของการเปลี่ยนแปลงของโครงผลึกและของการเปลี่ยนแปลงสมบัติอิเล็กทรอนิก (electronic pro perties) ที่ขอบเขตของเกรนซึ่งส่งผลทำให้สภาพด้านทานไฟฟ้าเพิ่มขึ้นในขณะที่อุณหภูมิเพิ่มขึ้นในช่วงอุณหภูมิแคบๆ ปรากฏการณ์ PTC เป็นปรากฏการณ์ที่ความด้านทานไฟฟ้าในบริเวณขอบเขตของเกรน (grain boundary region) มีค่าเพิ่มขึ้นแบบเอกซ์โปเนนเซียลตามอุณหภูมิที่อุณหภูมิมากกว่าอุณหภูมิคูรี

BaTiO₃ เป็นสารกึ่งตัวนำแบบเฟอร์โรอิเล็กตริก (ferroelectric semiconductor) และแสดงปรากฏการณ์ PTC อุณหภูมิคูรีของ BaTiO₃ มีค่า 120-130 °ช ค่า α สอดคล้องตามสมการ $\alpha = (1/\rho)(d\rho/dT)$ เมื่อ ρ เป็น สภาพต้านทานไฟฟ้าของวัสดุและ d ρ/dT เป็นอัตราการเปลี่ยนแแปลงสภาพต้านทานไฟฟ้าต่อหนึ่งหน่วยอุณหภูมิ สารที่ใช้ทำเทอร์มิสเตอร์แบบ PTC ได้แก่ BaTiO₃+0.01La₂O₃, BaTiO₃+0.01Y₂O₃, BaTiO₃+0.01Nb₂O₅, BaTiO₃ +0.01Ta₂O₃ และ BaTiO₃+0.01Sb₂O₃ เทอร์มิสเตอร์แบบ PTC สามารถนำไปประยุกต์ใช้งานเป็นหัววัดอุณหภูมิ (temperature sensor) ตัวทำความร้อนอุณหภูมิคงที่ (constant temperature heater หรือ PTC heater) และ อุปกรณ์จำกัดกระแสไฟฟ้า (current limiter) [1]

้ได้ทำการตรวจเอกสารจากวารสารวิจัยในต่างประเทศดังต่อไปนี้

J. L. Zhang ได้เตรียม Ba_{.5}Sr_{.5}TiO₃ และทดสอบการเก็บและคายประจุไฟฟ้า [3] Liqin Zhou ได้เตรียมตัวเก็บประจุแบบหลายชั้น Sr ูBa ูTiO ุวัดสภาพต้านทานไฟฟ้า ค่าคงที่ไดอิเล็กตริก และ ตัวประกอบการสูญเสียที่สัมพันธ์กับความถี่ [4] Cheng-Fu Yang ได้เตรียม (Ba ูSr)(Ti Zr)O ู และวัดค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆ [5] Masalu Miyayama ได้เตรียม (Ba_{1-x}Sr_x)(Nb_{0.003}Ti_{0.997})O₃ + 1 mol% TiO₂ + 0.07 mol% MnO [6] B. M. Wanklyn ได้เตรียม Eu Ti O, วัดสภาพการนำไฟฟ้าและค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆ [7] Manling BaO ได้เตรียม Ba(Ti,Sn)Oุ วัดค่าคงที่ไดอิเล็กตริกและการสูญเสียไดอิเล็กตริก [8] S. Kazaoui ได้เตรียม Ba(Ti Zr, O, วัดความจุไฟฟ้าและตัวประกอบการสูญเสียที่สัมพันธ์กับอุณหภูมิ [9] E. Iguchi ได้เตรียม (Sr ____La)(Ti __Mn)O ุ ทำขั้วแล้ววัดค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆ [10] Kazuhide Abe ได้เตรียมฟิล์มบาง (Ba_.24 Sr_.76) TiO และวัดค่าคงที่ไดอิเล็กตริกที่ความถี่ต่างๆ [11] Ho-Gi Kim ได้เตรียมฟิล์มบาง BaTiO₃ โดยการเผาซินเตอริงแบบไมโครเวฟ(microwave sintering) [12] P. Padmini ได้เตรียม BaTiO₃ + 0.3 at% Nb₂O₅ ;BaTiO₃ + 0.3 at% Nb₂O₅ + 0.2 at% Bi₂O₃ วัดความ ้สัมพันธ์ระหว่างสภาพต้านทานไฟฟ้าและค่าคงที่ไดอิเล็กตริกกับอุณหภูมิ [13] A.S. Bhalla ได้เตรียม Bi₄Ti₃O₁₂ วัดความหนาและตรวจดูพื้นผิว [14] Aldo B. Alles ได้เตรียม BaTiO₂ วัดสภาพต้านทานไฟฟ้าที่อุณหภูมิต่างๆ [15] Horng-Yi Chang ได้เตรียม (Sr "Ba ")TiO ุทดสอบปรากฏการณ์ PTC และวัดอุณหภูมิคูรี (T) [16] O. Parkash ได้เตรียม (Sr La)(Sn Co O, O, วัดค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆ [17] W. Zhu ได้เตรียมผง BaTiO₃ และวัดค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆ [18] C. Leach ได้เตรียมเทอร์มิสเตอร์ที่ทำมาจาก BaTiO₃ แล้วศึกษากำแพงความต้านทาน [19] N. S. Hari ได้เตรียม n-BaTiOุ ศึกษาปรากฏการณ์ PTC วัดสภาพต้านทานไฟฟ้าที่อุณหภูมิต่างๆ [20] A. Ramesh Babu ได้เตรียม Ba(Ti_{1x}Cu_x)O₃ และวัดค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆ [21] N. Yasuda ได้เตรียม Ba(Ti ูSn)O ู วัดค่าคงที่ไดอิเล็กตริกที่อุณหภูมิต่างๆและอุณหภูมิคูรี [22] Shail Upadhyay ได้เตรียม BaSnOุ และวัดค่าคงที่ไดอิเล็กตริกที่ความถี่และอุณหภูมิต่างๆ [23] D. J. Wang ได้เตรียม (Sr,Pb)TiO₃ วัดสภาพด้านทานไฟฟ้าที่อุณหภูมิต่างๆและ T ู แล้วหาค่า $m{lpha}$ [24] S. Shibagaki ได้เตรียม Ca-doped SrTiO ุ capacitor และวัดค่า lpha เหล่านี้เป็นต้น [25]

รายงานฉบับนี้เป็นการเสนอการเตรียมก้อนสาร BaTiO₃+0.9ZrO₂ จากวัสดุเริ่มต้นที่เป็นผง ศึกษาเฟสของสาร วัดสมบัติไดอิเล็กตริกของสารในสนามไฟฟ้าสลับก่อนโพลิง เช่น อิมพีแดนซ์ (impedance, Z) ความนำไฟฟ้า (conductance, G) ความจุไฟฟ้า (capacitance, C) ตัวประกอบการสูญเสีย (dissipation factor, D) ตัวประกอบคุณภาพ (quality factor, Q) ทดสอบการกรองแรงดันความถี่สูงผ่านก่อนโพลิง ทดสอบผลของสนามไฟฟ้าแรงสูงที่มีต่อการ เปลี่ยนแปลงความต้านทานไฟฟ้าและทดสอบเทอร์มิสเตอร์แบบ PTC หลังโพลิงของเซรามิกส์ BaTiO₃+0.9ZrO₂

2. วัสดุอุปกรณ์และวิธีการ

2.1 การเตรียมสาร BaTiO,+ 0.9ZrO, และศึกษาเฟสของสาร

เตรียมก้อนสารโดยวิธีเทคนิคเซรามิกส์มาตรฐาน (standard ceramic techniques) เริ่มจากผง BaTiO₃ และ ZrO₂ ที่มีความบริสุทธิ์ร้อยละ 99.9 คำนวณน้ำหนักจากสูตร BaTiO₃+ 0.9ZrO₂ ชั่งผงของสารด้วยเครื่องชั่ง ผสมสารด้วยโกร่ง นำผงของสารใส่กระป๋องพลาสติก หมุนผสมสารด้วยเครื่องหมุน หยดโพลีไวนิลแอลกอฮอล์ (PVA) ผสมน้ำกลั่น นำผงของสารใส่เบ้าอัด นำเบ้าอัดติดตั้งที่เครื่องอัดสาร (RIIK 25 tons) อัดเป็นก้อน วางไว้วันหนึ่ง แล้วนำก้อนสารวางในเตาหลอม (furnace) ที่ใช้เครื่องควบคุมอุณหภูมิ (FCR-13A-R/M) และใช้ลวดคู่ควบความ ร้อนชนิด K (CA) (model JB-35) เผาสองครั้งที่ 1000 °ช และ1200 °ช โดยใช้อัตราการเพิ่มอุณหภูมิ 5 °ช /นาที และอุณหภูมิยืนไฟ 1 ชั่วโมง ขั้นตอนการเตรียมก้อนสารแสดงในรูปที่ 1 นำก้อนสารที่ผ่านการเผาไปวิเคราะห์ด้วย เทคนิค XRD (PW3710) เพื่อดูเฟสของสาร

2.2 การวัดสมบัติของสารในสนามไฟฟ้าสลับ

2.2.1 การวัดสมบัติไดอิเล็กตริกในสนามไฟฟ้าสลับ

วัดความหนาและเส้นผ่านศูนย์กลางของสารด้วยไมโครมิเตอร์แล้วใช้เครื่อง LCR Meter (HP 4263B) วัด Z, G, C, D, Q vs f ที่อุณหภูมิห้อง (24 ํซ) ความถี่ที่ใช้วัดมี 5 ค่า คือ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz และแรงดันไฟฟ้าของเครื่องที่ส่งไปยังสาร 1,000 mV บันทึกผล

2.2.2 การวัดการตอบสนองต่อแรงดันไฟฟ้าความถี่สูง

2.2.2.1 การวัดอิมพีแดนซ์ที่ความถี่ในช่วง 1 kHz ถึง 80 kHz

ทำขั้วไฟฟ้าด้วยกาวเงิน กาวเงินที่ใช้ประกอบด้วย 2 หลอด หลอดที่ 1 (part A) ประกอบส่วนผสม

ของเงิน (silver) อีพอกซีเรซิน (epoxy resin) และโมดีฟายด์อีพอกซีเอสเตอร์ (modified epoxy ester) หลอดที่ 2 (part B) ประกอบด้วยส่วนผสมของเงิน (silver) และโมดิฟายด์อัลฟาติกอะมีน (modified alphatic amine) นำเงินกับ กาวจากหลอดทั้งสองผสมกันด้วยปริมาณที่เท่ากันแล้วทาลงบนผิวหน้าของสารและอบด้วยเตาไฟฟ้าอุณหภูมิ 120 °ซ เป็นเวลา 10 นาที ใช้ลวดของสายโทรศัพท์ต่อขาของอุปกรณ์โดยการบัดกรี

จัดชุดการทดลองดังแสดงในรูปที่ 2 ปรับแรงดันไฟฟ้าเอาท์พุทของซิกแนลเยเนเรเตอร์ (0-5 MHz) เพื่อให้กระแสไฟฟ้าไหลผ่านตัวต้านทาน 10 kΩ และสารที่เตรียมได้ ใช้มัลติมิเตอร์ (Fluke 45 Dual Display Multimeter) วัดกระแสไฟฟ้าที่ไหลผ่านสาร (I) และแรงดันไฟฟ้า (V) ที่ตกคร่อมสารในช่วงความถี่ (f) ที่อุณหภูมิห้อง (24°ซ) คำนวณ อิมพีแดนซ์ของสารจากสูตร Z = V/I บันทึกผลลงในตารางแล้วเขียนกราฟอิมพีแดนซ์ที่ความถี่ต่างๆ (Z vs f)

รูปที่ 2 การวัดอิมพีแดนซ์ที่ความถี่ในช่วง 1 kHz ถึง 80 kHz

2.2.2.2 การทดสอบการกรองแรงดันความถี่สูงผ่าน

จัดชุดการทดลองดังแสดงในรูปที่ 3 ปล่อยกระแสไฟฟ้าจากซิกแนลเยเนอเรเตอร์ (5 kHz) ไหลผ่าน สารและตัวต้านทาน 10 kΩ ใช้มัลติมิเตอร์ (Fluke 45 dual display multimeter) วัดแรงดันไฟฟ้าตกคร่อมสารที่ ความถี่ในช่วง 20 kHz ถึง 320 kHz ที่อุณหภูมิห้อง (24 °ช) ไม่ได้ทดลองที่ความถี่ในช่วง 320 kHz ถึง 5 MHz เนื่องจากแรงดันเอาท์พุทของซิกแนลเยเนอเรเตอร์มีค่าลดลงมาก

ร**ปที่ 3** การทดสอบการกรองแรงดันความถี่สูงผ่านในช่วงความถี่ 20 kHz ถึง 320 kHz

2.3 การทดสอบผลของสนามโพลิงที่มีต่อสมบัติของสาร

2.3.1 การทดสอบผลของสนามโพลิงที่มีต่อความต้านทานไฟฟ้าของสาร

วัดความต้านทานไฟฟ้า (R) ก่อนได้รับสนามไฟฟ้าแรงสูงหรือสนามโพลิงด้วยมิเตอร์ความต้านทาน สูง (HP 4339B) จัดเตรียมแผงวงจรสำหรับโพลิง ทำการโพลิงโดยการป้อนสนามไฟฟ้าโดยใช้แรงดันไฟฟ้าตรง 10,000 V เป็นเวลา 48 วินาที ในน้ำมันไฮดรอลิกซึ่งใส่ในบีคเกอร์ที่อุณหภูมิห้อง (24 °ช) การป้อนแรงดันไฟฟ้าเป็นแบบพัลส์ แล้ววัดความต้านทานไฟฟ้า หลังโพลิงด้วยเครื่องมัลติมิเตอร์ (Fluke 45 dual display multimeter) บันทึกผล

2.3.2 การทดสอบปรากฏการณ์ PTC หลังโพลิง

ไม่ได้ทดสอบปรากฏการณ์ PTC ก่อนที่สารได้รับสนามไฟฟ้าเนื่องจากความต้านทานไฟฟ้า เปลี่ยนแปลงตามเวลาในขณะที่อุณหภูมิมีค่าคงที่ จึงทดสอบเฉพาะหลังจากที่สารได้รับสนามไฟฟ้า การทดสอบเริ่ม จากใช้ตัวจับพร้อมขาตั้งยึดก้อนสารที่ทำขั้วด้วยกาวเงินและผ่านการรับสนามไฟฟ้าแรงสูงมาแล้วและหัววัด อุณหภูมิให้อยู่เหนือเตาไฟฟ้าประมาณ 4 ซม. สาเหตุที่วางเหนือเตา 4 ซม. เพื่อให้อัตราการเพิ่มอุณหภูมิไม่สูงมาก ซึ่งสะดวกต่อการวัด วัดความต้านทานไฟฟ้าด้วยเครื่องมัลติมิเตอร์ (Fluke 45 Dual Display Multimeter) และอุณหภูมิ (T) ด้วยเครื่องวัดอุณหภูมิ (AVD M890C⁺) โดยที่ก้อนสารกับหัววัดอุณหภูมิอยู่ที่ระดับเดียวกันดังแสดงในรูปที่ 4 หลัง จากนั้นให้เพิ่มอุณหภูมิของสารอย่างช้าๆ บันทึกความต้านทานไฟฟ้าและอุณหภูมิลงในตารางแล้วพลอตกราฟ R vs T

รูปที่ 4 การทดสอบปรากฏการณ์ PTC หลังโพลิง

3. ผลการทดลองและวิจารณ์ผล

3.1 ผลการเตรียมสาร BaTiO₃+ 0.9ZrO₂ และศึกษาเฟสของสาร

ได้ก้อนสารรูปจานที่มีสีขาวเหลือง การที่ได้นำสารไปเผา 2 ครั้ง ก็เพื่อให้อะตอมเกิดการจัดตำแหน่งอยู่ใน สภาวะสมดุลมากขึ้น ภาพถ่าย XRD (X-ray diffraction) แสดงในรูปที่ 5 เฟสของสารที่พบประกอบด้วย BaTiO₃ และ ZrO₂ ผสมกันอยู่ สาร BaTiO₃ ประกอบด้วยระนาบ (001), (101), (111), (002) และ (210) การเรียงตัวของ อะตอมอยู่ในระบบเตตระโกนอลและมิโครงสร้างผลึกเป็นแบบเพอรอฟสไกต์ ส่วนสาร ZrO₂ ประกอบด้วยระนาบ (100), (011), (-111), (002), (200) และ (021) การเรียงตัวของอะตอมอยู่ในระบบโมโนคลินิค

รูปที่ 5 ภาพถ่ายการเลี้ยวเบนของรังสีเอกซ์ของสาร BaTiO₂+0.9ZrO₂

3.2 ผลการวัดสมบัติของสารในสนามไฟฟ้าสลับ

3.2.1 ผลการวัดสมบัติไดอิเล็กตริกในสนามไฟฟ้าสลับ

ความหนาและเส้นผ่านศูนย์กลางของสารที่วัดได้มีค่า 2.527 มม. และ 13.707 มม. ตามลำดับ เมื่อ ป้อนแรงดันไฟฟ้าไปยังสาร 1000 mV พบว่าได้กราฟ Z, G, C, D, Q vs f มีลักษณะแสดงดังรูปที่ 6 ถึง 10

รูปที่ 6 อิมพีแดนซ์ที่ความถี่ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz

รูปที่ 7 ความนำไฟฟ้าที่ความถี่ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz

รูปที่ 8 ความจุไฟฟ้าที่ความถี่ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz

รูปที่ 9 ตัวประกอบการสูญเสียที่ความถี่ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz

รูปที่ 10 ตัวประกอบคุณภาพที่ความถี่ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz

ผลการวัดที่ความถี่ 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz (รูปที่ 6-10) พบว่าเมื่อความถี เพิ่มขึ้น อิมพีแดนซ์ ความจุไฟฟ้า และด้วประกอบการสูญเสีย มีค่าลดลง แต่ความนำไฟฟ้าและด้วประกอบคุณภาพ มีค่าเพิ่มขึ้น การที่อิมพีแดนซ์ของสารลดลงในขณะที่ความถี่เพิ่มขึ้นเป็นการแสดงให้เห็นว่าสารแสดงสมบัติการกรอง แรงดันไฟฟ้าความถี่สูง การที่ความนำไฟฟ้าเพิ่มขึ้นในขณะที่ความถี่เพิ่มขึ้นแสดงว่าสารยอมให้กระแสไฟฟ้าผ่านด้ว มันได้มากที่ความถี่สูง ความจุไฟฟ้าของสารที่ความถี่แต่ละค่าสามารถนำไปใช้ออกแบบวงจรในกรณีที่นำสารไปทำ เป็นอุปกรณ์ใช้งานที่ความถี่เหล่านั้น เมื่อพิจารณาที่ความถี่ 100 kHz พบว่าด้วประกอบการสูญเสียมีค่าน้อยและ ด้วประกอบคุณภาพมีค่ามาก พลังงานไฟฟ้ามีการสูญเสียน้อยที่ความถี่สูง (100 kHz) เป็นการแสดงให้เห็นว่าสารมี แนวโน้มนำไปใช้งานได้ที่ความถี่ย่านนี้ ตัวประกอบคุณภาพใช้พิจารณาคุณภาพของสารที่ความถี่แต่ละค่า สมบัติได อิเล็กตริกในสนามไฟฟ้าสลับนี้สามารถนำไปใช้ในการออกแบบสำหรับกรณีที่ให้สารอยู่ในวงจรไฟสลับที่ความถี่ต่างๆ กราฟที่แสดงให้แกน f เป็นสเกลลอก เพื่อให้จุดของข้อมูลที่ความถี่ 0.1 kHz กับ 0.12 kHz แยกจากกันชัดเจน ส่วน แกน Z, G, C, D และ Q เป็นแกนธรรมดา เพื่อให้กราฟเป็นเส้นโค้ง สามารถพิจารณาการตอบสนองของสารที่มี ต่อความถี่ได้

3.2.2 ผลการวัดการตอบสนองต่อแรงดันไฟฟ้าความถี่สูง

3.2.2.1 ผลการวัดอิมพีแดนซ์ที่ความถี่ในช่วง 1 kHz ถึง 80 kHz

ผลการวัดแสดงในรูปที่ 11 อิมพีแดนซ์มีค่าลดลงอย่างรวดเร็วในช่วงความถี่ 1 kHz ถึง 20 kHz

รูปที่ 11 อิมพีแดนซ์ในช่วงความถี่ 1 kHz ถึง 80 kHz

3.2.2.2 ผลการทดสอบการกรองแรงดันความถี่สูงผ่าน

สารสามารถกรองแรงดันไฟฟ้าที่มีความถี่ในช่วง 200 kHz ถึง 320 kHz ได้ดี แสดงในรูปที่ 12

รูปที่ 12 การกรองแรงดันความถี่สูงผ่านในช่วง 200 kHz ถึง 320 kHz

3.3 ผลการทดสอบผลของสนามโพลิงที่มีต่อสมบัติของสาร

3.3.1 ผลการทดสอบผลของสนามโพลิงที่มีต่อความต้านทานไฟฟ้าของสาร

ความต้านทานไฟฟ้าก่อนโพลิงและหลังโพลิงมีค่า 11,900 MΩ และ 24.075 kΩ ตามลำดับ ผล ของการโพลิงทำให้ความต้านทานไฟฟ้าของสารลดลง 494,288.68 เท่า การทำโพลิงทำให้ความต้านทานไฟฟ้าของ สารลดลงเกิดจากการมีโพลาไรเซชันค้างในสาร การโพลิงสารที่ใช้สนามไฟฟ้าซึ่งมีค่า 3.96 kV/mm พบว่าทำให้ เกิดการเปลี่ยนแปลงดังนี้

1) ก่อนโพลิง

ความต้านทานไฟฟ้าของสารที่วัดได้ขณะอุณหภูมิคงที่ที่อุณหภูมิห้อง (24 °ฮ) มีค่าเพิ่มขึ้นตามเวลา ในลักษณะเดียวกันกับความต้านทานไฟฟ้าของตัวเก็บประจุที่มีค่าเพิ่มขึ้นในขณะที่กำลังเก็บประจุไฟฟ้า ดังนั้นสาร แสดงสมบัติเด่นเป็นตัวเก็บประจุ ไม่สามารถทดสอบสมบัติ PTC เนื่องจากความต้านทานไฟฟ้าของสารเพิ่มขึ้นตาม เวลาในขณะที่อุณหภูมิคงที่

2) หลังโพลิง

ความต้านทานไฟฟ้าของสารมีค่าคงที่ในขณะที่อุณหภูมิคงที่ที่อุณหภูมิห้อง ความต้านทานไฟฟ้าลด

ลงมาเป็น 24.075 kΩ เมื่อเพิ่มอุณหภูมิพบว่าความต้านทานไฟฟ้าของสารเพิ่มขึ้นซึ่งเป็นสมบัติของเทอร์มิสเตอร์แบบ PTC

3.3.2 ผลการทดสอบปรากฏการณ์ PTC หลังโพลิง

ผลการทดสอบแสดงในรูปที่ 13 กล่าวคือ

ช่วง 24 ํช ถึง 80 ํช	ความต้านทานเปลี่ยนเล็กน้อย
ช่วง 80 ํช ถึง 82 ํช	ความต้านทานเพิ่มเร็วมาก (อัตราการเพิ่มขึ้นของความต้านทานมีค่า 1205.39 k Ω / ํช) ที่
	อุณหภูมิ 84 ํ ซ ความต้านทานมีค่าสูงสุด
ช่วง 84 ํช ถึง 90 ํช	ความต้านทานเปลี่ยนเล็กน้อย
ช่วง 90 ํซ ถึง 108 ํซ	ความต้านทานลดลงเร็ว (อัตราการลดลงของความต้านทานมีค่า -137.23 k Ω / ํช)
ช่วง 108 [°] ซ ถึง 130 °ซ	ความต้านทานลดลงเล็กน้อย

รูปที่ 13 ผลการทดสอบปรากฏการณ์ PTC หลังโพลิง

เมื่อพิจารณาจากกราฟพบว่าอุณหภูมิคูรีของสาร BaTiO₃+0.9ZrO₂ มีค่าประมาณ 80 °ซ และจากเอกสาร ที่รายงาน [1] อุณหภูมิคูรีของ BaTiO₃ มีค่า 120-130 °ซ ผลของตัวเติม 0.9ZrO₂ ทำให้อุณหภูมิคูรีลดลง การ เปลี่ยนอุณหภูมิเพื่อวัดความต้านทานไฟฟ้าจะใช้อัตราการเพิ่มอุณหภูมิคงที่โดยประมาณ และจากการทดลองพบว่า ถ้าวางสารใกล้เตามากเกินไป ความต้านทานของสารจะเปลี่ยนเร็วเกินไปจนบันทึกไม่ทัน ดังนั้นการทดลองนี้จึงได้ เลือกวางสารและหัววัดอุณหภูมิที่ความสูงประมาณ 4 ซม. เมื่อพิจารณารายละเอียดจากเอกสาร [2] พบว่าความ ด้านทานไฟฟ้าในบริเวณขอบเขตของเกรนมีค่าเพิ่มขึ้นแบบเอกโปเนนเชียลตามอุณหภูมิที่อุณหภูมิมากกว่าอุณหภูมิคูรี แต่จากผลการทดลองของสารสูตรนี้พบว่าความต้านทานไฟฟ้าที่เพิ่มขึ้นอย่างรวดเร็วมากในช่วง 80 °ซ ถึง 82 °ซ การ

‡ ÈÕÀ"4/p183-200

197

ที่ความต้านทานไฟฟ้าเพิ่มขึ้นอย่างรวดเร็วเกิดจากบริเวณขอบเขตของเกรนจับอิเล็กตรอนที่เคลื่อนที่ผ่านทำให้ กระแสไฟฟ้าลดลง [2] ความต้านทานไฟฟ้าของสารถึงเพิ่มขึ้น ความต้านทานไฟฟ้าของสารที่มีค่าเพิ่มขึ้นอย่าง รวดเร็วจนถึงค่าสูงสุดแล้วเปลี่ยนแปลงเล็กน้อยตามด้วยมีค่าลดลงอย่างเร็วในช่วงอุณหภูมิ 80°ช ถึง 108°ช นี้ เป็น ข้อมูลที่ได้จากการสังเกตเห็นหลายครั้งในห้องทดลอง

4. สรุปผลการวิจัย

้ก้อนสารรูปจานที่เตรียมได้มีสีขาวเหลืองโดยมีความหนาและเส้นผ่าศูนย์กลางของสารเท่ากับ 2.527 มม. และ 13.707 มม. ตามลำดับ ภาพถ่าย XRD ชี้บอกว่าก้อนสารประกอบด้วยสาร 2 เฟส ผสมกันอยู่ซึ่งเป็น BaTiO และ ZrO เมื่อวัดโดยใช้แรงดันไฟฟ้าสลับ 1000 mV ที่ความถี่ (f) 100 Hz, 120 Hz, 1 kHz, 10 kHz และ 100 kHz พบว่าค่าอิมพีแดนซ์ (Z) ความนำไฟฟ้า (G) ความจุไฟฟ้า (C) ตัวประกอบการสูญเสีย (D) และตัวประกอบ คุณภาพ (Q) มีค่าสอดคล้องตามสมการ Z = 45.64f^{0.9013} ; G = 0.004f^{0.5619} ; C = 3.3468f^{0.0872} ; D = 0.1877f^{0.3516} และ Q = 5.3587 $f^{0.3496}$ โดยที่ Z, G, C และ f มีหน่วยเป็น M Ω , μ S, pF และ kHz ตามลำดับ ส่วนค่า D และ Q ้ไม่มีหน่วย ผลการวัดอิมพีแดนซ์ที่ความถี่ในช่วง1 kHz ถึง 80 kHz พบว่ามีค่าสอดคล้องตามสมการ Z = 6.7106f^{0.9718} โดยที่ Z และ f มีหน่วยเป็น MΩ และ kHz ตามลำดับ อิมพีแดนซ์มีค่าลดลงอย่างรวดเร็วในช่วงความถี่ 1 kHz ถึง 20 kHz ผลการทดสอบการกรองแรงดันความถี่สูงผ่านพบว่าแรงดันไฟฟ้าที่สารกรองให้ผ่านได้ดีจะอยู่ในช่วงความถึ่ 200 kHz ถึง 320 kHz ส่วนความถี่ในช่วง 320 kHz ถึง 5 MHz ไม่ได้ทดลองเนื่องจากแรงดันเอาท์พุทของ ชิกแนลเยเนอเรเตอร์มีค่าลดลงมาก แรงดันไฟฟ้าที่ผ่านสารแล้วไปตกคร่อมตัวต้านทานโหลดมีความสัมพันธ์ดังสมการ V ุ = -0.0101f² + 6.1851f + 22.35 โดยที่ V ุ และ f มีหน่วยเป็น mV และ kHz ตามลำดับ สนามไฟฟ้าโพลิงที่ ใช้มีค่า 3.96 kV/มม. ความต้านทานไฟฟ้าก่อนและหลังโพลิงมีค่า 11,900 M Ω และ 24.075 k Ω ตามลำดับ ผล ของการโพลิงทำให้ความต้านทานไฟฟ้าของสารลดลง 494,288.68 เท่า และเมื่อวัดปรากฎการณ์ PTC หลังโพลิง ของสารพบว่าความต้านทานไฟฟ้าเพิ่มเร็วมากในช่วง 80 ํซ ถึง 82 ํซ โดยมีอัตราการเพิ่มขึ้นของความต้านทาน ้ไฟฟ้าเท่ากับ +1205.39 kΩ/ ํซ ความต้านทานไฟฟ้าลดลงเร็วในช่วง 90 ํซ ถึง 108 ํซ โดยมีอัตราการลดลงของ ี้ความต้านทานไฟฟ้าเท่ากับ -137.23 kΩ/ ํซ อุณหภูมิคูรีของสารมีค่าประมาณ 80 ํซ นอกจากนั้นก่อนโพลิงนั้นสาร มีลักษณะเป็นตัวเก็บประจุไฟฟ้า หลังโพลิงแล้วสารมีลักษณะเป็นเทอร์มิสเตอร์แบบ PTC สาร BaTiO_+0.9ZrO_ ที่เตรียมได้มีแนวโน้มนำไปประยุกต์ใช้งานเป็นอุปกรณ์การกรองแรงดันไฟฟ้าความถี่สูงผ่านและสวิทซ์ความร้อนได้

5. กิตติกรรมประกาศ

งานวิจัยนี้ได้รับทุนสนับสนุนจากโครงงานนักศึกษาของภาควิชาฟิสิกส์และทุนทำงานแลกเปลี่ยนของคณะ วิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่ ประจำปี 2544-45 งานวิจัยนี้ได้ใช้เครื่องมือและ อุปกรณ์จากห้องปฏิบัติการฟิสิกส์วัสดุ หน่วยเครื่องมือกลาง และทุน STDB (2531)

6. เอกสารอ้างอิง

198

1. Buchanan Relva, C., 1991, *Ceramic Materials for Electronics,* Second Edition, Mercel Dekker Inc., New York.

2. Moulson, A. J. and Herbert, J. M., 1990, Electroceramics, Chapman & Hall, London.

3. Zhang, J. L., 1992, "Electrical Conduction of Ba_{0.5}Sr_{0.5}TiO₃ Ceramics under d.c. Voltage," *Journal of Materials Science Letters*, Vol. 11, pp. 294-295.

4. Liqin Zhou, 1992, "Preparation and Properties of Sr_{0.7}Ba_{0.3}TiO₃-Based Multilayer Boundary-Layer Capacitors," *Journal of Materials Science Letters*, Vol. 11, pp. 1134-1136.

5. Cheng-Fu Yang., 1992, "Effect of CuO on Sintering and Dielectric Characteristics of (Ba_{1-x} Sr_x)(Ti_{0.9}Zr_{0.1})O₃," *Journal of Materials Science*, Vol. 27, pp. 6573-6578.

6. Miyayama, M., 1992, "Infrared Sensing Properties of Positive Temperature Coefficient Thermistors with Large Temperature Coefficients of Resistivity," *Journal of Materials Science*, Vol. 27, pp. 127-132.

7. Wanklyn, B. M., 1992, "Electrical Transport Properties of Eu₂Ti₂O₇ Single Crystal," *Journal of Material Science*, Vol. 27, pp. 4080- 4084.

8. Manling BaO., 1993, "Study on the Dielectric Properties of Ba(Ti,Sn)O₃ Ceramics Prepared from Ultrafine Powder," *Journal of Materials Science*, Vol. 28, pp. 6617-6621.

 Kazaoui, S., 1993, "Dielectric Relaxation in (BaTi_{0.8}Zr_{0.2})O₃ Ceramics Prepared from Sol-Gel and Solid State Reaction Powders," *Journal of Materials Science*, Vol. 28, pp. 1211-1219.

10. Iguchi, E., 1993, "Dielectric Relaxation in $SrTiO_3$ Doped with La_2O_3 and MnO_2 at Low Temperatures," *Journal of Materials Science*, Vol. 28, pp. 5809-5813.

11. Kazuhide Abe, 1994, "Epitaxial Growth and Dielectric Properties of Ba_{0.24}Sr_{0.76}TiO₃ Thin Film," *Journal of Applied Physics*, No. 33, pp. 5297-5300.

12. Ho-Gi Kim., 1994, "Microwave Sintering of BaTiO₃ Thick Films," *Journal of Materials Science Letters*, Vol. 13, pp. 806-809.

13. Padmini, P. and Kutty, T. R. N., 1994, "Influence of Bi³⁺ Ions in Enhancing the Magnitude of Positive Temperature Coefficients of Resistance in n-BaTiO₃ Ceramics," *Journal of Materials Science: Materials in Electronics*, Vol. 5, pp. 203-209.

14. Bhalla, A. S., 1994, "Surface Morphology of R.F. Sputtered Bismuth Titanate Thin Films," Journal of Materials Science, Vol. 29, pp. 4659-4662. 15. Alles, Aldo B., Murphy, Michael W., Symanski, Jesse J., Tremper, Christine L., and Schulze, Walter A., 1995, "Piezoresistivity Modeling of Grain-Boundary Junctions in Positive Temperature Coefficient of Resistivity BaTiO_a," *Journal of Applied Physics*, Vol. 77, No. 10, pp. 5322-5334.

16. Horng-Yi Chang., Kuo-Shung Liu, and I-Nan Lin, 1995, "Electrical Characteristics of (Sr_{0.2}Ba_{0.8})TiO₃ Positive Temperature Coefficient of Resistivity Materials Prepared by Microwave Sintering," *Journal of Applied Physics*, Vol. 78, No. 1, pp. 423-427.

17. Parkash, O., 1996, "Dielectric Properties of Sr_{1-x}La_xSn_{1-x}Co_x O₃ System," *Journal of Materials Science*, Vol 31, pp. 4705-4708.

18. Zhu, W., Wang, C. C., Akbar, S. A., and Asiaie, R. 1997, "Fast-Sintering of Hydrothermally Synthesized BaTiO₃ Powders and Their Dielectric Properties," *Journal of Materials Science*, Vol. 32, No. 16, pp. 4303-4307.

19. Leach, C., Russell, J. D., and Wood, G. I., 1997, "Direct Observation of Resistive Barriers in a BaTiO₃ Based Thermistor," *Journal of Materials Science*, No. 32, No. 17, pp. 4641-4643.

20. Hari, N. S., Padmini, P., and Kutty, T. R. N., 1997, "Complex Impedance Analyses of n-BaTiO₃ Ceramics Showing Positive Temperature Coefficient of Resistance," *Journal of Material : Materials in Electronics*, Vol. 8, pp. 15-22.

21. Ramesh Babu, A. and Prasadarao, A. V.,1997, "Effect of Copper Substitution on the Microstructure and Ferroelectric Properties of Barium titanate," *Journal of Materials Letters*, Vol. 16, pp. 313-315.

22. Yasuda, N., Ohwa, H., and Arai, K., 1997, "Effect of Hydrostatic Pressure in Barium Titanate Stannate Solid Solution Ba(Ti_{1,x}Sn_x)O₃," *Journal of Materials Science Letters*, Vol. 16, pp. 1315-1318.

23. Upadhyay, S. and Parkash, O., 1997, "Preparation and Characterization of Barium Stannate BaSnO₃," *Journal of Materials Science Letters*, Vol. 16, pp. 1330-1332.

24. Wang, D. J., Gui, Z. L., and Li, L. T., 1997, "Preparation and Electrical Properties of Semiconducting Strontium-lead-titanate PTCR Ceramics," *Journal of Materials Science: Materials in Electronics*, Vol. 8, pp. 271-276.

25. Shibagaki, S., Koga, A., and Tanaka, J., 1997, "Calcium-Doping Effect on Temperature Coefficients of Dielectric Constants in SrTiO₃ Capacitors," *Journal of Materials Science*, Vol. 32, No. 6, pp. 1449-1453.