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In solving heat conduction problems using the boundary element method, dis-continuous normal heat
flux at boundary is usually encountered. Difficulty may arise when normal heat flux is to be determined at edges
or corners where there is discontinuity because the system of boundary element equations may be ill-conditioned.
This paper presents a technique that makes use of the uniqueness of heat flux vector at edges and corners to
generate additional equations that will give a well-conditioned system of boundary element equations. Implementation
is described for two-dimensional problems and three-dimensional problems. Examples show that this technique
is simple and effective.
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1.  Introduction

Although temperature and heat flux are continuous functions, normal heat flux at edges or

corners may be discontinuous because of discontinuous normal vectors. The boundary element

method for solving heat conduction problem requires a numerical technique to deal with discontinuities

in normal heat flux at edges and corners. Several techniques have been proposed. The use of

nonconforming or discontinuous elements avoids such difficulties altogether by not placing a boundary

node at an edge or a corner [1]. However, conforming elements are usually preferred because they

have the higher potential to produce accurate solutions [2].

When conforming elements are used, heat flux must be allowed to be multiple-valued at an

edge or a corner. This is accomplished by placing multiple nodes there. If the boundary condition at

only one side of the edge or the corner is of Neumann type (i.e. normal heat flux is specified), no

problem arises. If not, however, the boundary element method will yield distorted solution that has

nearly equal values of secondary variables at different sides of the edge or the corner. This is due to

the fact that collocation at the multiple nodes at the edge or the corner yield similar algebraic

equations, leading to a high condition number in the system of boundary element equations. By

supplying auxiliary equations, the tendency to yield nearly equal values of secondary variables at the

edge or the corner may be circumvented.

Auxiliary equations may be obtained by collocating at additional points either outside the

domain or on the boundary [3],[4]. This method is quite simple, and applicable to any problem.

Previous studies have shown the effectiveness of this method. However, the author has been unsuccessful

in applying this method to the three-dimensional heat conduction problem. This may be due to the

fact the boundary element method can produce accurate solution at boundary nodes and interior

nodes that are not too close to the boundary.

Another way to derive auxiliary equations is by making use of the fact that heat flux must be

unique everywhere on the boundary. Chan and Chandra [2] suggested an algorithm based on this

idea to handle corners in two-dimensional problems. This paper presents a technique based on this

idea also. However, this technique is generalized to three-dimensional problems. In the following

sections, brief description of the boundary element formulation for heat conduction problems is

described. Subsequently, implementation is described for two-dimensional problems that use quadratic

element and three-dimensional problems that use six-node triangular element or eight-node quadrilateral

element. Finally, examples are given to show the effectiveness of this technique.
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2.  General Boundary Element Formulation

For a heat conduction problem described by the Laplaceûs equation:

where the Laplace operator is  ∂2/∂x2 + ∂2/∂y2  for two-dimensional problems or  ∂2/∂x2 + ∂2/∂y2 +

∂2/∂z 2  for three-dimensional problems. The corresponding boundary integral equation is [5]

 (1)

where κ is thermal conductivity, c is coefficient that depends on the location of  ξ , T is temperature,

q is normal heat flux, G is the fundamental solution, and n is the coordinate normal to the boundary.

Note that the boundary is a closed curve for a two-dimensional problem, or a closed area for a three-

dimensional problem. If the boundary is discretized, appropriate interpolation functions are applied to Eq.

2, and numerical integration is preformed, the result is a system of boundary element equations [5]:

 (2)

where  Aij and  Bij are coefficients that result from numerical integration of integrals in Eq. 2, and N

is the number of boundary nodes. In order to allow for discontinuous normal heat flux at edges and

corners, multiple nodes are placed at edges and corners. This means that this system of algebraic

equations is ill-conditioned because if nodes k and l are at the same coordinates,  Akj will be nearly

equal to  Alj, and Bkj will be nearly equal to Blj. The solution to Eq. 3 may still be possible, but q
k
 and

q
l
 will have almost the same value although they should be different. Consequently, the boundary

element solution to this heat conduction problem may be inaccurate if nothing is done to improve the

condition number of Eq. 3.

 (3)
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3.  Two-dimensional Problem

One way to make Eq. 3 well-conditioned is to replace one or more boundary element

equations at edges and corners with equations that are not obtained from Eq. 2. The use of unique

heat flux can yield these equations. Consider a corner of a two-dimensional domain where elements

(i) and (ii) meet as shown in Fig. 1. Notice that there are two nodes (3 and 4) at the corner, and normal

heat flux q
3
 at node 3 of element (i) is not equal to normal heat flux q

4
 at node 4 of element (ii). Even

though normal heat flux is discontinuous at the corner, heat flux vector of which normal and tangential

components at node 3 of element (i) are q
3
 and q

3t
, must be unique. Therefore, the vector sum of q

3

and q
3t
 must be equal to the vector sum of q

4
 and q

4t
, which denote the normal and tangential

components at node 4 of element (ii). The following relation can be written.

Fig. 1 (a) Domain and boundary of a two-dimensional heat conduction problem. The corner inside the
dashed circle is where normal heat flux is discontinuous. (b) Boundary around the corner is magnified to
show elements, nodes, and unequal nornal heat flux components. (c) Because nodes 3 and 4 have the

same coordinates, heat flux vector q at these nodes must be equal even though q3 ≠ q4.
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where α1 and α2 are angle between  q
4 
 and  q

3
 and angle between  q

4
 and  q

3t
, respectively. In

implementing this technique, the boundary element equation at node 3 (i = 3 in Eq. 3) can be

obtained from Eq. 2 as usual. But the boundary element equation at node 4 is replaced by Eq. 4 with

q
3t
 related to temperatures at nearby nodes by the Fourierûs law.

 (4)

where all derivatives with respect to s must be evaluated at the value of s corresponding to node 3.

 (5)

4.  Three-dimensional Problem

In a three-dimensional problem, normal heat flux may be discontinuous at an edge or a

corner, but heat flux must be unique at either location. There are 2 nodes at the edge or 3 nodes at

the corner. Analogous technique can be used to derive one equation to replace a boundary element

equation. In Eq. 3 in the case of the edge or 2 equations in the case of the corner. Fig. 2 shows the

orientation of the normal heat flux (q
2
) at one side of an edge with respect to the three components

of the heat flux vector (q
1
, q

t1
, q

t2
) at the other side of the edge. The relation between  q

2
 and the

three heat flux components is similar to Eq. 4.

Fig. 2 Normal heat flux components q
1
 and q

2
 at the edge may not be equal. However,

                   because heat flux at the edge is unique, q
2
 can be related to q

1
,  q

t1
, and q

t2
.
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where α1, is the angle between q
2
 and q

1
, α2 is the angle between q

2
 and q

t1
, and α3 is the angle

between q
2
 and  q

t2
. Heat flux components  q

t1
 and   q

t2
 are in the direction of s1 and s2, respectively,

which are the parameters used to describe the surface boundary. Tangential components of heat flux

at the edge are related to temperatures at nearby nodes by the Fourierûs law.

 (6)

where all derivatives with respect to s1 and s2 must be evaluated at the values of s1 and s2

corresponding to the node under consideration.

Fig. 3 shows the orientation of the normal heat flux  q
2
 in element (ii) and the normal heat flux

q
3
 in element (iii) at the corner where elements (i), (ii), and (iii) meet with respect to the three heat flux

components (q
1
, q

t1
, q

t2
) in element (i). Two equations analogous to Eq. 6 can be used to replace 2

boundary element equations in Eq. 3 that correspond to corner nodes in elements (ii) and (iii).

 (7)

 (8)

  Fig. 3 Elements (i), (ii), and (iii) meet at the corner. Normal heat flux  q
2
 in element (ii) and normal heat

flux q
3
 in element (iii) at the corner can be related the three heat flux components in element (i).
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5. Numerical Results

The proposed technique is tested by a two-dimensional example and a three-dimensional

example. In both examples, the value of thermal conductivity is unity. The two-dimensional example

is a heat conduction problem in a square of unit length as shown in Fig. 4. Let temperature distribu-

tion be described by

Now suppose that the exact temperature distribution is unknown, but boundary conditions

are known. Let temperature be specified on two sides of the square as shown in Fig. 4, and normal

heat flux be specified on the other two sides. The boundary element method will be used to calculate

normal heat flux.

 (9)

Now suppose that the exact temperature distribution is unknown, but boundary conditions

are known. Let temperature be specified on three sides of the cube as shown in Fig. 5, and normal

heat flux be specified on the other three sides. Again, the boundary element method will be used to

calculate normal heat flux.

 (10)

Fig. 4 The two-dimensional problem is a heat conduction problem within a square of unit length.
Temperature is specified on two sides of the square, whereas heat flux is specified on the other two sides.

For the three-dimensional example, consider heat conduction in a cube of unit length shown

in Fig. 5. Let temperature distribution be described by



«“√ “√«‘®—¬·≈–æ—≤π“ ¡®∏. ªï∑’Ë 26 ©∫—∫∑’Ë 3 °√°Æ“§¡-°—π¬“¬π 2546 277

For both examples, the measure of accuracy is indicated by the L2 norm of the difference

between the exact heat flux (qexact) and reproduced heat flux (q) on the boundary where temperature

is specified:

  Fig. 5 The sample three-dimensional problem is a heat conduction problem within a cube of unit length.
Temperature is specified on three sides of the cube, whereas heat flux is specified on the other three sides.

where M is the number of nodes on the boundary where temperature is specified. Exact heat flux is

obtained from the Fourierûs law

 (11)

with T is given in Eq. 10, and the reproduced heat flux is obtained from the boundary element

method.

 (12)
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Table 1 Comparison of ε of boundary element solutions of the two-dimensional sample
problem with and without using the proposed technique. The boundary is divided
into equal quadratic elements.

22

42

62

Using the proposed

technique

8.47 x 10-4

2.05 x 10-4

1.95 x 10-4

Not using the proposed

technique

0.255

0.184

0.152

Table 2 Comparison of ε of boundary element solutions of the three-dimensional sample
problem with and without using the proposed technique. The boundary is divided into
equal six-node triangular elements.

75

147

243

Using the proposed

technique

2.54 x 10-2

1.72 x 10-2

1.45 x 10-2

Not using the proposed

technique

4.40

0.429

0.423

Table 3  Comparison of  ε of boundary element solutions of the three-dimensional
sample problem with and without using the proposed technique. The boundary is
divided into equal eight-node quadrilateral elements.

63

120

195

Using the proposed

technique

2.10 x 10-2

9.47 x 10-3

5.62 x 10-3

Not using the proposed

technique

0.545

0.471

0.422

M

M

M
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Tables 1 - 3 compare ε of boundary element solutions of the sample two-dimensional and

three-dimensional sample problems with and without using the proposed technique. (The solutions

obtained without using the proposed technique are solutions to the system of algebraic equations in

Eq. 3 without any special treatment to deal with discontinuous normal heat flux.) Each solution is

obtained by dividing the boundary into equal elements so that the number of nodes on part of the

boundary where temperature is specified is M. It can be seen that boundary element solutions

without using the proposed technique yield very high values ε. This is so because the boundary

element method will make heat flux continuous at edges and corners, which will pollute results away

from edges and corners. By contrast, boundary element solutions obtained by using the proposed

technique yield low values ε, which monotonically decrease with increasing M.

6. Conclusions

A numerical technique to resolve difficulties caused by discontinuous boundary conditions in

the boundary element method is presented in this paper. In this technique, normal heat flux at any

edge node or a corner node of a quadratic element, a six-node triangular element or an eight-node

quadrilateral element is related to normal heat flux and derivatives of temperature at an adjacent

element on the other side of the edge or corner. The technique simple to implement, and effective in

solving sample problems.

7. References

1. Aliabadi, M. H., 2002, The Boundary Element Method Volume 2: Applications in Solids and

Structures, Wiley, Chichester.

2. Chan C. L. and Chandra A., 1991, çAn Algorithm for Handling Corners in the Boundary

Element Method: Application to Conduction-Convection Equations,é Applied Mathematical Modelling,

Vol. 15, pp. 244-255.

3. Mitra, A. K. and Ingber, M. S., 1993, çA Multi-node Method to Resolve the Difficulties in the

Boundary Integral Equation Method Caused by Corners and Discontinuous Boundary Conditions,é

International Journal for Numerical Methods in Engineering, Vol. 36, pp. 1735 - 1746.

4. Subia S. R., Ingber M. S., and Mitra A. K., 1995, çA Comparison of the Semi-discontinuous

Element and Multiple Node with Auxiliary Boundary Collocation Approaches for the Boundary Element

Method,é Engineering Analysis with Boundary Elements, Vol. 15, pp. 19-27.

5. Becker, A. A., 1992, The Boundary Element Method in Engineering, McGraw-Hill, London.




