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This study presents the nanoindentation tests of silicon (100) by experimental and simulation techniques.
The indentation processes were simulated with the ABAQUS finite element (FE) software programme. The
models have the ability to simulate the loading-unloading curves, simulate the development of plastic deformation
during indentation and extract intrinsic material property data from the test. Computed load-displacement
curves from FE models are compared with the load-displacement curves measured by the experiments. The
hardness results obtained from simulation show that they are in good agreement with the measured results.
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1. Introduction

Generally speaking, nanoindentation is one of the simplest ways to measure the mechanical
properties of bulk materials or very thin films, particularly the two important properties, hardness and
elastic modulus [1-2]. Recently, different numerical techniques have been developed to use in many
fields of science and engineering that can be used in indentation problems. Finite element technique
is applied for studying the very complex stress-strain field of thin films or bulk materials in a
nanoindentation process. Some investigators have studied the indentation process using the numerical
approach of finite element method [3-8]. One of the first examples of comparison between FE analysis
and experimental results were proposed by Bhattacharya and Nix [9] in which they simulated a sub-
micrometer indentation test. So far, the verification of the finite element method could be an effective
tool for simulating hardness measurements.

This article presents two-dimensional (2-D) axisymmetric non-linear FE model to simulate the
nanoindentation process. The FE results are compared with the experimental results obtained from
silicon (100). The results are in the form of load-displacement curves during the loading-unloading
process. Owing to the complexity of the phenomena involved in the indentation process, we used the
FE program ABAQUS [10] which allows effective modelling of non-linear problems such as the
materials properties, the contact between two bodies and the large deformation of the material under
the indenter.

2. Experimental Method

Nanoindentation test involves indenting a specimen by a very low load using a high precision
instrument, which records the load and displacement continuously. The mechanical properties can be
derived from the measured load-displacement curves under loading/unloading through appropriate
data analyse. These tests are based on new technologies that allow precise measurement and control
of the indenting forces and precise measurement of the indentation depths.

The most popular calibration technique is that of Oliver and Pharr [11] which is based on the
elastic solutions of Sneddon [12] for indentation by an axisymmetric body. Since the displacements
during unloading are elastic, the relationship between the unloading curve and the elastic modulus of
the material being tested can be described by the elastic contact theory. Pharr et al. [13] have shown
that the compliance of the contact between any axisymmetric indenter and an elastically isotropic
half-space is given by
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where S is the experimentally measured stiffness of unloading data, A is the projected area of
the contact, Cs is the specimenûs compliance, h is the penetration depth  and  P is the load on the
indenter. Er is the reduced modulus owing to take account of the effects of elastic deformation of
indenter (non-rigidity). Reduced modulus is the combined modulus of the indenter and the specimen.
Es, Vs, Ei and Vi are the elastic modulus and Poissonûs ratio of the specimen and indenter, respec-
tively. Equation (2) has its origins in elastic contact theory and many investigators support that it can
apply to any indenter that can be described as a body of revolution of a smooth function. In the usual
way we define the hardness of the material, H, to be the mean pressure exerted by the indenter at
maximum load,

(1)

(2)

where  Pmax is the maximum load applied during the indentation and A is the projected area of
contact between the indenter and the specimen. The measurements of indentation modulus and
hardness depend on knowing the contact area of the indentations. The expression for the contact
area according to a Berkovich indenter is usually estimated by the formula as follows:

(3)

where hc is the contact depth or the specimen displacement and C1 through C8 are constants.
The lead term describes a perfect Berkovich indenter while the others describe deviations from the
Berkovich geometry due to blunting at the tip.

Silicon (100) was chosen for use in this study because of very smooth surface. In addition,
such the material was indented by diamond Berkovich indenter in sub-micron or nano-scales and
performed to a depth of 300 nm. The experiment is performed using the NanoTestTM [14] from Micro
Materials Limited., Wrexham, United Kingdom. The NanoTestTM device measures the movement of a
calibrated diamond indenter penetrating into a specimen surface at a controlled loading rate. This
device uses a pendulum pivoted on bearings which are essentially frictionless.

(4)

( (

1
S

dh
dP

CS= = = 1
A

1
Er

π
2

= +
1
Er

1
Es

vs
2 ( (1

Ei

vi
2

Pmax

A
=H

=A(hc) 24.5hc  + C1hc  + C2hc   + C3hc   + ...........+ C8hc
2 1

1
2

1
4

1
128



«“√ “√«‘®—¬·≈–æ—≤π“ ¡®∏. ªï∑’Ë 27 ©∫—∫∑’Ë 3 °√°Æ“§¡-°—π¬“¬π 2547276

3. Finite Element Modelling (FEM)

In the present study, the 2-D axisymmetric case is performed to simulate the elastic-plastic
indentation process by the ABAQUS finite element (FE) code [10]. The conical rigid indenter is used
in the model in order to define an axisymmetric model. The indenter has a half-angle of 70.3 Ì, and thus
has the same projected area-depth function as the standard Berkovich indenter. The specimen is
modelled with 7,841 four-node axisymmetric reduced integration elements (CAX4R element type [10]),
as shown in Figure 1. In order to study the stress distribution under the indenter when the load
applied, a fine mesh is used under the contact area and near the tip of the indenter which the finest
mesh element is the square of 20 nm. The mesh is continuously coarser further away from the tip, as
shown in Figure 2. The indentation process is simulated both during loading and unloading step.
During loading process the simulation is performed to a depth of 500 nm in the y-direction, i.e. the
indenter tip penetrates into the specimen; while during unloading process the indenter tip returns to
the initial position (0, 0, 0).

Figure 1. Mesh of the entire specimen with the indenter for 2-D model.

The contact constraint is defined as the master and the slave surfaces. Due to fact that only
the master surface can penetrate into the slave surface, the contact direction is then determined with
respect to the master surface. The model chooses the indenter as the master surface and sample as
the slave surface. The boundary conditions are applied along the original point, centerline and bottom
of specimen by fixing the sample at the horizontal axis. The friction between the indenter tip and the
specimen surface is assumed to be zero. The nanoindentation model was developed by based on the
following assumptions, i.e. there is no strain hardening of the materials used in model and there is the
perfectly interfacial bonding between the indenter and the substrate.
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In the calculation, the elastic deformation occurs in the beginning of the process. The Mises
yield criterion is applied in the occurrence of the plastic deformation. The Mises stress equation is
given by the expression

Fig. 2.  Details of the mesh in the region near the tip of the indenter.

where σ1, σ2 and σ3 are the three principle stresses. When the σMises reaches the yield
strength of material (σY), the specimen starts to deform to the plasticity. Some necessary mechanical
properties used in the simulation for silicon (100) are Youngûs modulus,  E = 130 GPa; Poissonûs  ratio,
v = 0.28; and yield strength, σY = 7 GPa [15].

4. Results and Discussion

Fig. 3 shows the loading curves to compare between the experimental results and the FE
calculation. The load-displacement curves measured from various experiments demonstrate the re-
peatability of results from several nanoindentation tests. The FE result shows an excellent trend when
compared to the experimental results. From Fig. 3, it obviously shows that the FE model behaves
consistently harder than the experimental results slightly until an indentation depth of 200 nm. This
may be due to the differences in mesh refinement in the area near the indenter tip and/or the
deviation from the deformation of tip indenter during experiment.
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Fig. 3. The load-displacement curves from finite element method
with conical indenter and experimental results.
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Fig. 4. The load-displacement curves between finite element calculations increased
the values of Youngûs modulus and experimental results.
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As the Youngûs modulus of silicon found in literature was very low for the elastic-plastic model
when compared with the measured values, as shown in Table 1. Table 1 has been given elsewhere [N.
Panich and Y. Sun 2002, unpublished].

From this result, we have then tried to improve the agreement between the experimental
results and model, by increasing the youngûs modulus of silicon which is based on the measured
values. Fig. 4 shows the FE results of increasing the Youngûs modulus of silicon to 140, 150 and 180
GPa. From the Fig. 4, the best value for the modulus has been found to be about 180 GPa. Fig. 5
depicts the Mises stress contours (plastic deformation) for the 2-D axisymmetric FE model by
showing the levels of the stress away from the indenter tip vicinity. The maximum stress magnitudes
are in the region under the tip. The maximum stresses computed from Mises stress criterion have
values of 7 GPa as shown in the colour bar.

The simulation of the development of plastic deformation in silicon (100) was investigated in
order to gain a better understanding of the deformation behaviour in the material as the indentation
depth is increased.

Fig. 5 shows the propagation of the plastic deformation zone in silicon (100) material. At small
indentation depths, plastic deformation takes place around the indenter tip region, which propagates
both vertically and laterally as round shape (Fig. 5 (a)). At larger indentation depths, plastic deforma-
tion also propagates both vertically and laterally but the plastic deformation zone is larger than when
compared with the case of small indentation depths as shown in Fig. 5 (b).

A further study has been conducted in order to extract the intrinsic mechanical properties
using the developed FE model. Fig. 6 shows the load-displacement curves resulted from experiment of
silicon (100) together with the prediction from simulation modelling, and the input data from the
above analysis (best fit). Since the experimental data were used as the basis of the simulation, such
as the yield strength and Poissonûs ratio, it is not surprising that there is a good agreement between
the simulation and experimental results.

Table 1. Comparison of experimentally measured Youngûs modulus with value in the literature.

Material Experiment
E (GPa)

Literature Reference
E (GPa) v

Silicon (100) 151.8 15   130 0.28
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Fig. 7 shows the comparison of hardness between the experiment and FEM. It is noted that
FEM is able to extract intrinsic material properties. From these results, the model has shown the
reliability and possibility to apply this model to the single-layer system (thin film system), which will be
discussed in a forthcoming publication.

Fig. 5. The Mises stress contours (plastic deformation) for 2-D axisymmetric
FE model as the indentation depth is increased.

(a)

(b)
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5. Conclusions

Finite element method is a powerful device to simulate the indentation process at the nano-
scale. This study presents 2-D axisymmetric FE model to predict the nanoindentation procedures. The
FE results-load-displacement curves compare well with the measured results of silicon (100), even if
there is a slight deviation in the loading curves which the deviation relies on the Youngûs modulus of
specimen. Furthermore, in order to extract the intrinsic mechanical properties of silicon sample, the
model shows the best fit curve that the value of elastic modulus should be about 180 GPa. The
developed model also has been successfully used together with the nanoindentation experiments to
extract intrinsic mechanical properties such as hardness for silicon (100).

Fig. 6. Comparison of simulated results with experimental data.

Fig. 7. The comparison of hardness between the experiment and the calculated method.
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