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The convective-diffusive problem presents a challenge to several numerical methods. More efficient

methods are available when the problem is homogeneous. Three such methods are the boundary element

method (BEM), the boundary knot method (BKM), and the method of fundamental solutions (MFS). These

methods require only boundary nodes or boundary mesh, but not domain nodes or domain mesh as required by

the finite difference method or the finite element method. The performances of the three methods in solving a

sample two-dimensional convective-diffusive problem are compared in this paper. It is found that BKM and MFS

give more accurate results when the solution is a relatively smooth function, but fail when the solution varies too

rapidly. On the other hand, BEM can deal with all types of solutions, and its solutions exhibit convergence.
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1.  Introduction

Several physical and chemical phenomena involve both convection and diffusion. As a result,

several numerical methods have been used to solve the convective-diffusive problem. The partial

differential equation describing the convective-diffusive problem consists of partial derivatives in

space of first order and second order, which may cause difficulty for certain mesh-dependent numeri-

cal methods such as the finite difference method and the finite element method [1]. Recently, meshless

methods based on radial basis functions have been shown to provide accurate solutions to the

convective-diffusive problem [2-4]. These methods use global collocation to discretize the partial

differential equation, whereas mesh-dependent methods use local interpolation schemes.

For the homogeneous convective-diffusive problem, numerical methods that require only boundary

nodes or boundary mesh can be used to obtain solutions. These methods are computationally more

efficient than methods that require the generation of domain nodes or domain mesh. The three such

methods considered in this paper are the boundary element method (BEM), the boundary knot

method (BKM), and the method of fundamental solutions (MFS). BEM converts the governing partial

differential equation into a boundary integral equation. Discretization of this equation using local

interpolation over boundary mesh, numerical integration, and global assembling of elemental equa-

tions results in a system of linear equations to be solved for unknown variables on the boundary. The

success of BEM in solving the convective-diffusive problem is well known [5]. BKM expresses the

solution to the governing differential equation as a linear superposition of nonsingular fundamental

solutions. Unknown coefficients in this expression can be determined by collocation at the boundary.

BKM was proposed by Chen and Tanaka [6], and was used by Chen and Hon [7] to solve the

convective-diffusive problems in two dimensions and three dimensions. MFS is similar to BKM,

except that singular fundamental solutions are used instead, which necessitates the construction of

auxiliary boundary. MFS was successfully used to solve various problems [8], but there has heretofore

been no work on using MFS to solve the convective-diffusive problem. Since the three methods are

similar in their requiring only boundary nodes, it is interesting to compare the perfomance of the three

methods in solving this problem.

The main objective of this paper is to compare the performance of BEM, BKM, and MFS in

solving a sample steady-state convective-diffusive problem in two dimensions. In the following

sections, the mathematical description of the convective-diffusive problem is given, BEM, BKM, and

MFS formulations for solving the problem are described, and, finally, numerical results of the three

methods are compared and discussed.
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2. Mathematical description of the problem

Let u(x,y) be an arbitrary scalar function in a homogeneous, isotropic and in-compressible

medium of domain Ω with boundary Γ having constant velocity field  v  = vxi + vy j . If the steady state

prevails, and there is no generation term, the partial differential equation describing the distribution of

u(x,y) in Ω is

→
→ →

(1)

with boundary conditions

(2)

where α is the diffusive coefficient, κ is the conductive coefficient,  nx i + ny  j is the unit normal

vector, and f(x,y) and q(x,y) are arbitrary functions. Equation (1) can describe several transport

phenomena including heat transfer with convection, for which u is temperature, α is thermal diffusivity,

and κ is thermal conductivity.

3. Numerical methods

Since Eq. (1) is homogeneous, there is no need for domain nodes or domain mesh to discretize

it. A suitable method should only require boundary nodes or bound-ary mesh on Γ. This method may

be BEM, BKM, or MFS.

3.1 Boundary Element Method (BEM)

Equation (1) can be transformed into the following boundary integral equation [5].

→ →

(4)

(3)

where ξ is the displacement vector of the location where u is evaluated, r is displacement

vector of location along Γ, c is coefficient that depends on the location of ξ , and G is the fundamen-

tal solution.
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where K0 is the modified Bessel function of the second kind of order zero, and factor µ is

(5)

(6)

Discretizing Eq. (4) yields a set of boundary element equations, which can be solved together with

boundary conditions (2) and (3) for u and ∂u/∂n at all boundary nodes.

3.2 Boundary Knot Method (BKM)

Solution to Eq. (1) can be written as a linear superposition of radial basis function φ.

where N is the number of boundary nodes,

(7)

I0 is the modified Bessel function of the first kind of order zero, and factor µ is the same as in Eq. (6)

because

(8)

which is equivalent to Eq. (1) for two-dimensional problem in rectangular coordinates. Unknown

coefficients ai in Eq. (7) can be determined by collocation at nodes on Γ1 and Γ2.

(9)

(10)

3.3 Method of Fundamental Solutions (MFS)

Solution to Eq. (1) can also be written as a linear superposition of fundamental solutions [Eq. (5)]

(11)
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However, since

(12)

where δ is the Dirac-delta function, G satisfies Eq. (1) only if ρi is outside Ω. Therefore auxiliary

boundary points are required. The number of auxiliary boundary points is equal to the number of

boundary nodes N. Unknown coefficients bi in Eq. (12) can be determined by collocation at nodes on

Γ1 and Γ2.

(13)

→

(14)

(15)

4. Results and discussion

The sample problem to be solved by the three methods is the convective-diffusive problem in

two dimensions. The domain is a square of unit length as shown in Fig. 1. Auxiliary boundary

constructed for MFS is a concentric square of 1 + 2d length so that distance between boundary and

auxiliary boundary is d.
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Fig. 1 The square domain of unit length for the sample two-dimensional convective-diffusive problem.
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The origin of the x-y coordinates is located at the centroid of the square. Γ1 is the bottom side of the

domain, and Γ2 is the other three sides. Boundary nodes, uniformly distributed on Γ1 and Γ2, are represented

by solid circles, and auxiliary boundary nodes (for MFS) are represented by circles. Distance between

boundary and auxiliary boundary is d. This figure shows the case in which the number of boundary nodes N

is 32.

In order to determine the accuracy of the three methods, exact solution to Eq. (1) is needed.

For this purpose, consider a sample problem of which governing equation is Eq. (1), and boundary

conditions are

The values of the parameters α and κ are both 1 in this sample problem. The exact solution of this

problem is

(16)

(17)

(18)

(19)

This problem is also solved numerically by the three methods for values of ui on Γ2. The error is the

average difference between the exact and computed values of u at all boundary nodes on Γ2,

defined as follows.

(20)

where M is the number of nodes on Γ2.

Results shown in Fig. 2 are obtained by solving the sample problem using BEM. The element

used is the quadratic element, and the number of boundary nodes is varied from 8 to 128. Four sets

of parameters vx and vy are considered. It can be seen that, for each set of vx and vy , error decreases

(21)

=u(x,− 0.5) exp(vx x− 0.5vy)

∂x
=

∂u(0.5, y)
vx exp(0.5vx + vy y)

∂x
=

∂u(− 0.5, y)
vx exp(−0.5vx + vy y)

∂y
=

∂u(x,0.5)
vy exp(vx x + 0.5vy)

=uexact (x,y) exp(vx x+ vy y)

1
M

uexact (xi ,yi) − ui

uexact (xi ,yi)
=ε

M

i=1

2
1/2
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monotonically with increasing N. This is the evidence of convergence behaviors of BEM solutions.

Moreover, error increases when vx and vy increase. This is to be expected since function uexact(x,y)

with large values of vx and vy is a rapidly-varying function, which is difficult to reproduce by numerical

methods. It is also well known that function uexact(x,y) with large values of vx and vy causes oscillatory

behavior when the convective-diffusive problem is solved by the finite difference method [1]. Upwind

technique can suppress this behavior, but it results in numerical diffusion. No such difficulties are

encountered when BEM is used.

Fig. 3 shows results obtained from BKM. For small values of vx and vy , BKM appears to yield

more accurate results than BEM. It is interesting, however, to note that error in this case does not

decrease monotonically with increasing N as in the case of BEM. More importantly, numerical results

show that BKM fails to produce acceptable results when vx and vy are equal to 20 no matter how

many boundary nodes are used.

Fig. 2 Variation of error of the BEM solution with the number of boundary nodes N and
parameters vx and vy of function uexact(x,y). Values of ε greater than 0.01 are not shown since

they indicate the failure of the method.

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

8 32 56 80 104 128

vx = vy = 1

vx = vy = 5

vx = vy = 10

vx = vy = 20

ε

N



«“√ “√«‘®—¬·≈–æ—≤π“ ¡®∏. ªï∑’Ë 27 ©∫—∫∑’Ë 4 µÿ≈“§¡-∏—π«“§¡ 2547 435

Fig. 3 Variation of error of the BKM solution with the number of boundary nodes N and
parameters vx and vy of function uexact(x,y). Values of ε greater than 0.01 are not shown

Fig. 4 Variation of error of the MFS solution with the number of boundary nodes N and
parameters vx and vy of function uexact(x,y). Values of ε greater than 0.01 are not shown.
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Finally, results for the case of MFS are shown in Fig. 4 For the sample problem, the accuracy

of MFS solutions is comparable to that of BKM solutions when vx and vy are small. Increasing N

results in smaller error until N is about 72. Further increase in N may not decrease error. Note that, like

BKM, MFS also fails when vx and vy are equal to 20. The accuracy of MFS solutions depends not only

on the N, vx and vy , but also on the distance d between the boundary and the auxiliary boundary.

Fig. 5 shows that an increase in d produces mixed results. For v
x
 = v

y
 = 5, error decreases monotically

until d = 0.5. For larger d and larger values of vx and vy , error is relatively insensitive to d.

5. Conclusions

For the problem considered, BEM with uniform mesh is superior to BKM and MFS with uniform

nodal distribution. Although BEM is less accurate than BKM and MFS for relatively smooth solutions,

BEM can deal with rapidly-varying solutions better than BKM and MFS. More importantly, BEM

results always display convergence, whereas BKM and MFS do not.

Numerical methods can be divided into methods that yield weak-form solutions and methods

that yield strong-form solutions. Since BEM is representative of the former, and BKM and MFS are

representatives of the latter. The results from this investigation seem to suggest the superiority of

traditional methods such as BEM and the finite element method that produce weak-form solutions

over recently proposed meshless methods that produce strong-form solutions.

Fig. 5 Variation of error of the MFS solution with the number of boundary nodes N and the distance d
between the boundary and the auxiliary boundary. Values of ε greater than 0.01 are not shown.
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