215 19RBuaziun was. Ui 29 aufl 3 nangran-fusnsu 2549 253

/ < a a 6 1 a ad 6 a 6 \
NI UNYUNANITILATIZHISHINN IS EI'lJ'JﬁVL'NvL‘H@l LAALNUG

wazdslWladan @ndd “wsudgwinaa a3n1s Wl 1w 2 A

Slsatt ANaszA1s ' UIIae mmmﬁmaz
a L% 4 o a d! a
NATINENFRTINA A5 gudTeTa a.AR0Inil B.AaaeMA AN 12120
a aw 63 (% ¢ a a4 4 a € v do a 6 4
3 Taw9gnasiun A 3085w 1 uay QAN J9B UAIUUY
& al (% 1 a
gmﬂmﬂiulaﬂamuam AUNITA

a & a = A
QVIEI']‘HT/]EJ'WI"I A5 D.NHAlETU A.ARDININ B.ARDINADY a.ﬁnumu 12120

UNANED

unauiinandemsuszyndsziiouisinludiofnuduacisTWladan Anddiiiomenisiadeuda
LLa:miﬂitﬁﬂﬂﬂ’J’mLﬁuﬁLﬁﬂ%quﬂiyﬂ’maﬂ’] asns “wl TewEuannmquieneg Mieadee laun naui
naf1 a3ms ul Tu2 {f nmamn unwleIuﬁLaaLuuﬁﬁ\[ﬁmnﬁﬁﬁq@mmniﬂﬁua:ﬁuaaﬁ FumaunA I
wazmstszyndideulazeuisn mivedusfmauilnladan Andd deanu aswanisuszynddviiam 2
fnge An Jovuduaenan WA U uardurinis “NE AUSTRINUAUINANLAZLHULIEY Wan13
anunsnfeitiludioduudlfivioufisuiosansdsunenmquiveasias uacisladan Andi
NaaNSAlFRINMTUTEEN 2 nadlau aolvitiufowadnsi saadosiu

a

M ey : seleuABlnludiefumd / Twladan Andd / nadn asns “uW

T ffemn m319138 MATrIAIngsaA3evna E-mail: limwiroj@engr.tu.ac.th
undnsySaunln nmedwiaminssuiasena
Jmng

AW N

1navy



254 715 1939BURsTAIU Ja5. T 29 afufl 3 nangiAn-uweu 2549

-
Comparison of Finite Element Solution and Photoelastic Results

for 2-D Contact Mechanics Problems

Wiroj Limtrakarn ', Bunjong Dechapanichkul *,

Thammasat University, Rangsit Campus, Klong 1, Klong Luang, Pathum Thani 12121
Sutee Olarnrithinun ®, Suwat Jirathearanat *, and Wuttipong Jirathearanat *
National Metal and Materials Technology Center, Thailand Science Park,
Paholyotin Road, Klong 1, Klong Luang, Pathum Thani 12120

Abstract

The finite element method and photoelasticity technique are presented to predict displacement
and stress distribution for contact mechanics problems. The paper first describes 2D contact
mechanics theory. The finite element formulations based on Lagrange multiplier and Penalty method
are presented, The computational procedure and its boundary conditions are then described. The
photoelasticity theory and its procedure are also explained. To evaluate the efficiency of both
techniques, the displacement and stress distribution for two circular plates contact problem and
circular-flat plate contact problem are used to compare the finite element solutions and those from
photoelasticity technique and Hertz solution. The solutions show that the stress distributions
predicted by finite element method are in good agreement with the photoelasticity results and Hertz

solutions.
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1. Introduction

In solid mechanics problems, the contact condition between two surfaces is one of important
factors that affects the maximum stress in static loading or wear in dynamic loading. A correct
understanding in the contact behavior under static loading can be directly implemented on the
product design and can be extended to use with the contact behavior under dynamic loading such as
sheet metal stamping process. The finite element method has been employed to predict the contact
behavior for several years. Consequently, there are many finite element algorithms invented to predict
the contact behavior in static loading such as Penalty algorithm, Lagrange multiplier algorithm and

augmented Lagrange multiplier, and etc.

This paper studied the capability and performance of contact algorithms for solving 2D contact
problems. The finite element method for 2D contact mechanics is presented. The computational
procedure and its boundary conditions are shown. Two contact algorithms (Penalty algorithm and
Lagrange multiplier algorithm) are used in displacement and stress distribution analysis for two
deformable circular plate contact problem and a deformable circle plate in contact with a deformable
rectangular plate problem. Then, the computational results are validated with Hertz solution and

photoelasticity.

2. Theory

2.1 Governing differential equation
Contact mechanics is governed by the equilibrium equations, strain-displacement relations

and constitutive equations.
2.1.1 Equilibrium equations
The equilibrium equations can be written in variational form as [1],

W_- 8w _- 8w = [68edQ - Jidugs = 0 (1)
Q i PO

where SWS, SWR and SWC are virtual energy of internal stress, external force and contact,
respectively. Gij' is the stress components, Seij is virtual strain, tj is the surface traction, and 5ui is
virtual displacement. Boundary conditions may consist of specifying the surface traction [2] as

depicted in Fig. 1 as,

on =t (2
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where n and t1 are the outward unit normal vector and surface traction on the boundary S1 at'time t,

respectively. The boundary condition may include the prescribed displacement on the boundary S2 as,

U = (3)

g(xk.t) >0

Fig. 1 Boundary conditions for contact mechanics problem.

Also along the contact boundary SB, the normal contact stress should be compres-

sive and the boundary should not penetrate into the other as follows,

IA
o

4
()

q(xt = qxt)n
gixt) = g(x) - ulxt) n

v

where qc(x,t) is the contact traction, qn(x,t) is the normal component of contact traction, and g(xt) is

the gap between the two boundary surfaces.

The equation 4 and 5 are the contact condition of Lagrange multiplier method. This

method expresses the virtual work in the form,

sw_ = [ g +A_g)ds (6)

S

where A is the Lagrange multiplier and equivalent to the reaction force at contact point.
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The other contact algorithm is Penalty method. It will allow very small penetration

occurs on contact surface.
gixt) = gix) -ux) n = 0 (7)

8WC = sf(ssNgNésgN + tTSQT)dS (8)
where € is the Penalty parameter, subscript N and T mean normal and tangential
direction, respectively. Equation 8 is valid under slip condition. If the contact condition is pure stick

then tT =€ g

2.1.2 Strain-displacement relations
Contact problem normally involve small strain and assume the strain-displacement

relations in the form,

(u,+u) ©)

N

where €, is the strain components; u, and u, are the displacement components.
ij ' |

2.1.3 Constitutive equations
Contact mechanics has the constitutive equation that shows the relation of elastic

strain, 8a,- and the elastic stress, Gq in the form,
{o} - [Cl{e} (10)
where [C] is the elasticity matrix [3].
2.2 Finite Element Equations

The weak form of virtual work principle [2] is applied to the equilibrium equation 1 and

written in matrix form as,
[K{U} = {U}+{F} (11)

where [K] is the stiffness matrix, {U} is the displacement vector, {F }is the external load vector, and

{Fc} is the load vector of contact force.
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2.3 Photoelasticity [4, 5]

Photoelasticity technique can be explained with the wave theory of light in the form of

harmonic waveform.
E = A cos(¢— mt) (12)

where E is magnitude of light wave, A is the wave amplitude, ¢ is the phase angle of wave,

w is angular frequency, and t is time.

o = 27%(“5) (13)

e
1

27V
2mf = &4 14
T X (14)

where z is position along propagation axis, A is wavelength, 0 is phase of wave, f is wave frequency

and v is wave velocity.

Photoelasticity technique will control light path from source through wave plates and

measured model is located in the middle of them as shown in Fig. 2.

axis of polarization A @
Mht source

Force
',' I wave plate #2
[,
‘-.‘\ ) [
St photoelastic model
~

-
. axis of polarization

wave plate #2

observer

Fig. 2 A photoelastic model in a plane optical components.
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A wave plate resolves an incident light wave into parallel and perpendicular components
to the axis of polarization. The parallel component is transmitted, while the other component is

internally absorbed.

After the light wave entering the photoelastic model under loading, the stressed model
exhibits similar optical properties of a wave plate. The incident light wave is resolved into parallel and
perpendicular components to the principal stress directions at the point. After leaving the photoelastic
model, the two light wave components with different velocities enter the wave plate #2 and are

resolved again.

The leaving light wave has a relative retardation or angular phase shift, Ain the following

equation.
27 21th
A = —7\' 8 = ——f (n2 - n1) (15)

where h is the wave plate thickness, and n is the refractive index of media.

The principal stresses is related to the refractive index in the form,
n,-n = ¢ -0) (16)
Equation 16 is called stress-optic law. c is the relative stresszoptic coefficient, o, and G, are the
major and minor principal stress, respectively.

After substituting equation 16 into equation 15, the equation is in the form,

G -0 = —=¢ (17)

where N is the number of fringes appearing in an isochromatic fringe pattern and f is the material

fringe value.
N = — = - (18a)

f = — (18b)
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3. Examples

This paper focuses on two contact algorithms for finite element analysis, Penalty method and
Lagrange multiplier method. The efficiency of each method is studied and compared with Hertz
solutions in the first example. The examples used in this paper are two circular plates contact

problem and circular-flat plate contact problem.

3.1 Two circular plates contact problem
As shown in Fig. 3, two deformable circular plates are in contact. A force of 110.8 N is
applied on the top circle while the bottom circle lies on the rigid floor. Both circles have the same
material properties and dimensions, ie. Young’s Modulus = 952.889 MPa, Poisson’s ratio = 0.38 and

radius = 25 mm.

F=1108 N

R, =25 mm.
E, = 952.889 MPa
V, =038
R, =25 mm.

, = 952.889 MPa
VL, = 038

Rigid floor

O

Fig. 3 Two circle plate contact problem statement.

The contact behavior between two circles is investigated and has the solution based on Hertz theory

in the form.
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_ a2 Y
a < 2 F 1 (1= 0)E + (1 VY)/E, (19a)
I T 1/R, + 1/R,
F{1—=v)]|2 2R 2R
b = 0.638—~( 1)~[—+In—‘+|n—2] (19b)
Ly E |3 a a

where a is the contact length and b is the displacement of top circular plate in y direction.

The finite element model consists of 5,360 nodes and 5,280 elements for a half right

model. Fig. 7 shows details of elements near the contact surface.

Fig. 4 Finite element model around contact surface.

Applied forces are set at 27.7 N, 554 N, 83.1 N, and 110.8 N following the force scale of
the photoelasticity equipment. The deformation solution is compared with Hertz theory. Fig. 5 shows
the relation of contact length and applied forces. The solution error from the Penalty method is 0.7%,
which is much less than that of Lagrange multiplier method (10%). Fig. 6 displays displacement
along y axis versus the applied force. When comparing the solutions with Hertz theory, Penalty and

Lagrange multiplier methods show a comparable level of accuracy.

Although, more accurate solution can be obtained by reducing the element size around the
contact surface, however, the smaller element size, the more expenses in CPU time and space

storage are required.
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For stress analysis, the solutions from both Penalty and Lagrange multiplier methods are
identical. Fig. 7 shows the normal stress along the y axis. Fig. 8 displays the normal stress y along

the circumference.

Applied force (N)

120
100 —
80 —

60 —

— Hertz
o Penalty
A Lagrange Multiplier

40 —

20 H

Y T T T !
0.10 0.15 0.20 0.25 0.30

Contact length (mm.)

Fig. 5 Plot of applied force and contact iength.

Applied force (N)
120 4

100

80

60

40+ — Hertz

o Penalty

20 A Lagrange Multiplier

0 T T T 1
0 5 10 15 20

Displacement along y axis (x 10 mm.)

Fig. 6 Plot of applied force and displacement in y axis.
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Y (mm.)
50 —
40 —
= Penalty
O Lagrange Multiplier

30 —
20 T T T T |

0.0 1.0 20 3.0 40 50

G, (MPa)
Fig. 7 Plot of normal stress (cy) along y axis.

G, (MPa)
5 | é
4
3

_ )]
2 = Penalty

o Lagrange Muitiplier

4 X
0 -
-1 I I T I T I T T 1

-5 0 5 10 15 20 25 30 35 40

Distance along s direction (mm.)

Fig. 8 Plot of normal stress ((SY) along s direction.
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Photoelasticity Finite Element Method

Fig. 9 Comparison of max shear stress between photoelasticity result

and finite element method solution.

Fig. 9 shows the maximum shear stress contours of the photoelasticity result and finite element
solution based on 110.8 N applied on the top circle. As the result suggested, both results have a good

agreement.

3.2 Circular-flat plate contact problem
A circular plate is applied with a force in y direction against a deformable flat plate which
is supported by two rigid rollers as shown in Fig. 10. Because of symmetry, the finite element model

is generated only the right half of the model and consists of 5,580 nodes and 5,450 elements.

F=1108 N |

R =25 mm.
E, = 952.889 MPa
v, = 038

T T

30 mm

160 mm

A
\

Fig. 10 Circular-flat plate contact problem.
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Near the contact surface area will occur stress and displacement behavior based on
contact theory, while the behavior at the bottom edge of the flat plate is based on bending theory.
The finite element solution agrees well with the result from photoelasticity technique as shown by
maximum shear stress contours in Fig. 11. According to the results of the Penalty and Lagrange
multiplier method, the accuracy of both methods is equally the same as shown in Fig. 12-15. Contact
lengths and displacement along y axis will increase as the applied forces is larger as shown in Fig. 12
and 13. The maximum normal stress in the y direction will occur at the contact point (y = 0 mm.) and

decreases along the y axis away from the contact point, as shown in Fig. 14 and 15.

12
s

Photoelasticity Finite Element Method

Fig. 11 Comparison of max shear stress between photoelasticity result

and finite element method solution.
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Applied force (N)

120
A0
100 —
n
80
60 — n
O Penalty
40 - A [ agrange Multiplier
o
20 T T T l
0.5 1 1.5 2 25
Contact length (mm.)
Fig. 12 Plot of applied force and contact length
Applied force (N)
120 -
0o
100 —
80 - e
60 —
)
40
O Penalty
A A Lagrange Multiplier
20 T T 1
0 05 1 15

Displacement along y axis (x 10° mm.)

Fig. 13 Piot of applied force and displacement in y axis.
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20 —

— Penalty

O Lagrange Multiplier

| G, (MPa)

15

Fig. 14 Piot of normal stress (GY) along y axis.

G, (MPa)
20
15 —
10 7 — Penalty
O Lagrange Multiplier
5 —
0 T T | |
0 10 20 30 40

Distance along s direction (mm.)

Fig. 15 Plot of normal stress (GY) along s direction.
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4. Conclusions

This paper presents the finite element method and photoelasticity method in solving contact
mechanics problems. Examples are two circular plate contact problem and circular-flat plate contact
problem. Results show that the Penalty and Lagrange multiplier methods can be used to predict the
contact behavior efficiently. Computational results are compared with the Hertz theory and photoelasticity

result and show a good agreements.
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