
«“√ “√«‘®—¬·≈–æ—≤π“ ¡®∏. ªï∑’Ë 30 ©∫—∫∑’Ë 1 ¡°√“§¡-¡’π“§¡ 2550 49

∫∑§—¥¬àÕ

 ¡™“µ‘ ©—π∑»‘√‘«√√≥
 1

¡À“«‘∑¬“≈—¬∏√√¡»“ µ√å »Ÿπ¬å√—ß ‘µ §≈ÕßÀ≈«ß ª∑ÿ¡∏“π’ 12121

‡∑à“∑’Ëºà“π¡“°“√·°â ¡°“√‡π‡«’¬√å ‚µä° å Õß¡‘µ‘´÷Ëß¡’ “¡ ¡°“√·≈– “¡µ—«·ª√¡—°„™â«‘∏’‡™‘ßµ—«‡≈¢µ“¡·π«∑“ß

µ—«·ª√ª∞¡∞“πÀ√◊Õ·π«∑“ß°√–· «π·≈–øíß°å™—π “¬∏“√ ∫∑§«“¡π’Èπ”‡ πÕ·π«∑“ß„À¡à‚¥¬°“√°”®—¥§«“¡¥—π·≈–

 à«πª√–°Õ∫§«“¡‡√Á«µ—«Àπ÷ËßÕÕ°®“° ¡°“√‡π‡«’¬√å ‚µä° å º≈∑’Ë‰¥â§◊Õ  ¡°“√‡™‘ßÕπÿæ—π∏å¬àÕ¬Õ—π¥—∫Àπ÷Ëß ¡°“√ ÷́Ëß¡’

µ—«·ª√∑’Ë‰¡à∑√“∫§à“‡æ’¬ßµ—«‡¥’¬« πÕ°®“°π’È∫∑§«“¡¬—ßπ”‡ πÕ«‘∏’°“√®—¥µ”·Àπàß®ÿ¥´÷Ëß„™âøíß°å™—π∞“π‡™‘ß√—»¡’ ”À√—∫

·°â ¡°“√π’È µ—«·ª√∑’Ë‰¡à∑√“∫§à“„π ¡°“√§◊Õ  à«πª√–°Õ∫§«“¡‡√Á«®–∂Ÿ°ª√–¡“≥§à“‡ªìπº≈√«¡‡™‘ß‡ âπ¢Õßøíß°å™—π∞“π

°“√À“§à“ —¡ª√– ‘∑∏‘Ï¢Õß°“√ª√–¡“≥§à“„™â«‘∏’°“√§”π«≥ È́” «‘∏’π’È„™â·°âªí≠À“µ—«Õ¬à“ß ÷́Ëß∑√“∫º≈‡©≈¬·¡àπµ√ß º≈∑’Ë

‰¥â· ¥ß„Àâ‡ÀÁπ«à“®”π«π§√—Èß¢Õß°“√§”π«≥ È́”‡æ◊ËÕ„Àâ‰¥âº≈‡©≈¬≈Ÿà‡¢â“·≈–§«“¡·¡àπ¬”¢Õßº≈‡©≈¬¢÷Èπ°—∫æ“√“¡‘‡µÕ√å

Õ‘ √–¢Õßøíß°å™—π∞“π

º≈‡©≈¬¢Õß ¡°“√‡π‡«’¬√å ‚µä° å Õß¡‘µ‘‚¥¬«‘∏’°“√®—¥µ”·Àπàß®ÿ¥

´÷Ëß„™âøíß°å™—π∞“π‡™‘ß√—»¡’

1  √Õß»“ µ√“®“√¬å §≥–«‘»«°√√¡»“ µ√å



«“√ “√«‘®—¬·≈–æ—≤π“ ¡®∏. ªï∑’Ë 30 ©∫—∫∑’Ë 1 ¡°√“§¡-¡’π“§¡ 255050

The two-dimensional Navier-Stokes equations consisting of three equations and three unknowns

have been solved by conventional methods using the primitive-variable approach and the vorticity-stream

function approach. A new approach is proposed in this paper. By getting rid of pressure and one of the

velocity components, the Navier-Stokes equations can be reduced to a third-order partial differential

equation with one velocity component as the only unknown. A collocation method based on radial basis

functions is proposed for solving this equation. Unknown velocity component is approximated as a linear

combination of basis functions. Unknown coefficients are determined by an iterative scheme. The

proposed method is used to solve a test problem, for which exact solution is known. It is found that the

number of iterations required for a convergence and the accuracy of the solution depends on the free

parameter of basis functions.
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(1)

(2)

1. Introduction

The incompressible Navier-Stokes equations are

coupled partial differential equations of pressure and

velocity components. The two most popular

approaches for solving these equations are the

primitive-variable approach and the vorticity-stream

function approach [1]. In the primitive-variable

approach, the Navier-Stokes equations are to be

solved for primitive variables (pressure and

velocity components). Imposition of boundary

conditions in this approach is quite straightforward.

The vorticity-stream function approach requires the

transformation of the Navier-Stokes equations into

equations of derived variables (vorticity and stream

function). Pressure and velocity components are

determined from these derived variables. An advan-

tage of solving the transformed equations is that

there are two equations, which are fewer than the

number of equations for the corresponding problem

in the primitive-variable approach. By eliminating

vorticity from the two equations of the vorticity-

stream function approach, only one fourth-order

partial differential equation of the stream function

remains [2]. A disadvantage of the vorticity-stream

function approach is, however, that the imposition

boundary condition may be troublesome because

actual boundary conditions are usually given in

terms of velocity and pressure instead of the stream

function.

In this paper, an alternative approach for solv-

ing the two-dimensional Navier-Stokes equations is

proposed. This approach reduces the number of the

Navier-Stokes equations by two without requiring

the transformation of the Navier-Stokes equations

into equations of derived variables like the vortic-

ity-stream function approach. The number of equa-

tions is reduced by eliminating pressure and one of

the velocity components from the governing equa-

tions. As a result, there is only one equation to be

solved. Unlike the vorticity-stream function

approach, imposition of boundary conditions in the

proposed approach is simple because variables to

be solved for are still primitive variables. In addi-

tion this approach results in a third-order partial dif-

ferential equation, which should be easier to solve

than the fourth-order partial differential equation of

stream function from vorticity-stream function

approach [2]. Therefore, this approach has advan-

tages over both the primitive-variable approach and

the vorticity-stream function approach. The follow-

ing sections give details of this approach, a colloca-

tion method using this approach, and numerical re-

sults of using this method to solve a test problem

with known exact solution.

2. Reduction of Equations

The two-dimensional Navier-Stokes equations

consist of the momentum equations:
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u2

∂y

∂
+ = 0

∂x

∂u1
(3)

where ρ is density, ν is kinematic viscosity, p is pres-

sure, and u
1
 and u

2
 are x- and y-components of  ve-

locity. Elimination of p from Eqs. (1) and (2) yields

(4)

(5)

Substituting Eq. (5) into Eq.(4) results in one

equation with one unknown (u
1
). However, this

equation is a third-order nonlinear partial differen-

tial equation. An appropriate method for solving this

equation is a collocation method.

3. Basis Functions

In order to solve Eq. (4) by a collocation method,

∂u
1
/∂x must be approximated as a linear combina-

tion of independent basis functions.

(6)

(7)

(8)

u2 =
∂x

∂u1

dy− ∫

∂x

∂u1

(x, y) = Σa
i
φ(x, y, x

i
, y

i
)

i

where a
i
 are unknown coefficients. The approxima-

tion for ∂u
2
/∂y is obtained from Eq. (3).

In order to generate independent functions for

Eqs. (6) and (7), it is convenient to use radial basis

functions. One of the most popular radial basis func-

tion is the multiquadrics:

where c is called the shape parameter. Multiquadrics

is an axisymmetric function. A small value of c

results in a cone-like function. The function is

smoother as c increases. N independent basis

functions can be generated from multiquadrics by

choosing N different sets of coordinates (x
i
, y

i
).

Once the basis functions for the approximations

of ∂u
1
/∂x and ∂u

2
/∂y have been selected, the approxi-

mations for u
1
 and u

2
 can be obtained as follows.
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and the continuity equation:
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The approximation for ∂u
2
/∂x is obtained from

Eq. (5).

where

=u
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Next, Eq. (3) is used to express u
2
 in terms of u

1
.
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(14)

(13)

4. Collocation Method

Collocation methods based on radial basis func-

tions were popularized by Kansa [3]. They have been

used to solve a variety of linear and nonlinear

partial differential equations [4-9]. Previously, Mai-

Duy and Tran-Cong [10] and Shu et al. [11] solved

the two-dimensional Navier-Stokes equations in the

vorticity-stream function approach by collocation

methods that use radial basis functions. However,

equations they solved are second-order partial

differential equations, and not a third-order partial

differential equation like Eq. (4). In this section, the

collocation method for solving Eq. (4) is described.

(11)

(12)

This collocation method is known as the

multiquadric collocation method with additional

collocation at the boundary. It was used by

Chantasiriwan to solve linear partial differential

equations [12], and found to give more accurate

solutions than the standard multiquadric collocation

method that was used by Kansa [3].

Assume that there are a total of N nodes, divided

into N
b
 boundary nodes (indexed by i = 1, 2, ..., N

b
)

and Ni interior nodes (indexed by i = N
b
 + 1, N

b
 + 2,

..., N). Note that N = N
b
 + Ni. The velocity compo-

nents u
1
 and u

2
 at the kth iteration are approximated

as
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similar functional forms as     and     , except for a

different shape parameter (d ≠ c).

Approximations for derivatives of the velocity com-

ponents can be obtained by finding derivatives of

, , , and . For the purpose of iterative de-

termination of N + N
b
 unknown coefficients a

i

(k)

After linearization, Eq. (4) represents N equations

for (x, y) = (x
i
, y

i
)  (i = 1, 2, ..., N). Boundary condi-

tions for u
1
 and u

2
 yield 2N

b
 more equations. There-

fore, the resulting system of equations can be solved

by a least-square method because there are more

equations than unknowns. Initially, let  a
i

(o)= 0 (i =

1, 2, ..., N + N
b
). The iteration process is continued

until the following convergence criterion is satis-

fied:

where ƒ represents u
1
 or u

2
. The value of k that yields

converged solutions within 1000 iterations is

denoted by K. It is considered that no converged

solutions can be found if more than 1000 iterations

are required.

5. Results and Discussion

The test problem having Dirichlet boundary con-

dition is considered. Let (ξ
i
, η

i
) be coordinates of a

test node in the test problem. Velocity components

at the test node can be calculated from Eqs. (13)

and (14) after coefficients have been determined. If

the exact solution is known, error can be computed

from

ψ
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(i = 1, 2, ..., N + N
b
), nonlinear terms in Eq. (4) are

linearized by a scheme proposed by Ferziger and

Peric [13]. For example,ψ
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Basis functions       and       must be independent

from     and    . It is assumed that     and     have
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where l = 1 or 2, and N
t
 is the number of test nodes.

The domain for the test problem is a 1 × 1 square.

There are 64 test nodes located at (0.125i + 0.0625),

(0.125j + 0.0625) with integers i and j running

from -4 to 3. Let there be N collocation nodes

uniformly distributed in the domain, forming a

square grid. Fig. 1 shows distributions of test nodes

and collocation nodes for N = 81. Exact solutions

for this problem are

(19)

u1,exact(x, y) λv + e 
λ(x+y) = (20)

u2,exact(x, y) λv - e λ(x+y) = (21)

where λ is a parameter influencing the smoothness

of the solutions. Solutions with a smaller absolute

value of λ have a smoother form of function than

solutions with a larger absolute value of λ. From

these exact solutions, boundary conditions are

generated, numerical solutions are determined by

the proposed method, and compared with exact

solutions. In the following results, it is shown how

ε
1
, ε

2
 and K vary with the shape parameters (c and

d) and other parameters.

Fig. 1  Distributions of 81 collocation nodes

(white circles) and 64 test nodes (black circles)

in the domain of the test problem.

Fig. 2 shows influences of the shape parameters

c and d on ε
1
, ε

2
 and K for the case in which λ = -1,

ν = 1, and N = 81. It can be seen that solutions are

more accurate as c is increased. When c is lower

than 0.8, converged solutions are found within a few

iterations. If c is larger than 0.9, however, it is found

that no converged solution can be found. A large

value of c is associated with high condition number

of the coefficient matrix of the system of linear

equations. Since the computing machine used in this

study has a limited precision, an ill-conditioned

system of linear equations cannot be solved with

high precision. This may be a reason why the pro-

posed method does not converge when a certain

value of c is reached. In addition, Fig. 2 also shows

that solutions are relatively insensitive to the shape

parameter d between c + 0.1 and c + 0.2.
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Fig. 3 compares ε
1
, ε

2
 and K of solutions for three

values of N (49, 81, and 121) with λ = -1 and ν = 1.

The shape parameter d is varied with N so that

the difference between d and c scales with grid

spacing. The range of the shape parameter c in which

a converged solution can be obtained is narrower as

N is increased. An interesting consequence of this

is that solutions with a larger number of nodes and

smaller values of shape parameters may not be much

more accurate than solutions with a smaller number

of nodes and larger values of shape parameters. At

the limits of convergence, roughly similar accuracy

is obtained regardless of the number of nodes.

The proposed method is also tested with cases

in which λ and ν are smaller than -1 and 1, respec-

tively. These cases present a stiffer challenge

because their exact solutions are less smooth than

the exact solution for which λ = -1 and ν = 1.

Results of two new cases in which (λ, ν) = (-2, 0.1)

and (-3, 0.01) are compared with results of the base

case in which (λ, ν) = (-1, 1) in Fig. 4. It can be seen

that the proposed method can solve the test prob-

lem in the two new cases. Behaviors of ε
1
, ε

2
 and K

for two new cases are found to be qualitatively simi-

lar to those for the base case.
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Fig. 2  Variations of errors of velocity components (ε
1
 and ε

2
) and the number of iterations

with the shape parameters c and d for the test problem having parameters λ = -1 and ν = 1.

 The number of collocation nodes (N) is 81.
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Fig. 3  Variations of errors of velocity components (ε
1
 and ε

2
) and the number of iterations (K) with the

shape parameters c and the number of nodes (N) for the test problem having parameters λ = -1 and ν = 1.

The shape parameter d equals c + 0.2 for N = 49, c + 0.15 for N = 81, and c + 0.12 for N = 121.
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Fig. 4 Variations of errors of velocity components (ε
1
 and ε

2
) and the number of iterations (K) with the shape

parameter c for the test problem having three sets of parameters: (λ,ν) = (-1, 1), (-2, 0.1), and (-3, 0.01).

The number of collocation nodes (N) is 81, and the shape parameter d = c + 0.15.
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6. Conclusions

This paper presents an alternative approach for

solving the Navier-Stokes equations, in which

pressure and one of the velocity components are

eliminated, and the governing equations are reduced

to a third-order partial differential equation of the

remaining velocity component. The resulting equa-

tions are solved by a meshless collocation method

that uses multiquadrics and associated functions as

basis functions. Inspection of solutions to the test

problem by the proposed method reveals that shape

parameters of multiquadrics influence the accuracy

of solutions. Small values of the shape parameters

result in a low number of required iterations, but

the resulting solutions may not be accurate. On the

contrary, large values of the shape parameters can

yield very accurate solutions provided that

converged solutions can be found. Furthermore,

converged solutions may not be obtained if the shape

parameters are too large.
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