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Boundary Element Analysis of Piezoelectric Bi-Materials

This paper presents boundary element analysis of two-dimensional piezoelectric bi-materials under

mechanical or electrical loading. A direct formulation of the boundary integral equation is derived by

employing closed form Green’s functions for a two-dimensional piezoelectric solid subjected to

concentrated line loads and a line electrical charge, and utilizing a sub-region model and a multi-region

assembly. The convergence and numerical stability of the numerical solution scheme are established, and

the accuracy is verified by comparing with existing analytical solutions. Selected numerical results for

piezoelectric bi-materials with an elliptical hole due to remote mechanical or electrical loading are

presented to portray the influence of geometry of defects on stresses, electric displacement and electric

field around the hole and along the interface of piezoelectric bi-materials.
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1. Introduction

Piezoelectric materials are widely used in the

development of smart structures. These materials

generate an electric charge in response to

mechanical deformations and undergo deformations

under an applied electric field. Relatively low

tensile strength and fracture toughness are among

the major concerns that limit the industrial

applications of piezoelectric materials. Defects

such as cavities, inclusions and cracks in these

materials resulting from manufacturing processes

could lead to undesirable performance.

Analytical solutions to boundary value problems

involving piezoelectric solids with defects have been

reported in the literature [1-4]. Only problems

under ideal loading and geometries can be solved

by using analytical methods. In recent years, the

boundary element method (BEM) has emerged as

a versatile computational tool for analysis of

piezoelectric materials. This method requires only

discretization of the boundary and its solutions in

the vicinity of defects and material interface can be

computed very accurately by using the boundary

integral equations. Boundary element solutions for

a piezoelectric solid with a hole were given by Lee

[5], Ding et al. [6], Xu and Rajapakse [7] and

Liu and Fan [8]. In addition, Pan [9], Davi and

Milazzo [10] and Groh and Kuna [11] employed

the boundary element method to determine stress

intensity factors in a cracked piezoelectric medium.

This paper presents the application of a

boundary element method for two-dimensional

piezoelectric bi-materials with an elliptical cavity

under electromechanical loading as shown in Fig.

1. The problem is considered as a piezoelectric

domain consisting of two sub-regions with

different material properties (Fig. 2). The boundary

integral equation formulation employs closed form

Green’s functions, given by Rajapakse [12],

corresponding to a piezoelectric solid subjected to

concentrated line loads and a line electrical charge.

The global equation system is assembled by

considering the interface continuity conditions

between the two domains. The convergence,

numerical stability and accuracy of the boundary

element solution are verified by comparing with

analytical solutions given by Sosa [1]. Selected

numerical results for stresses, electric displacements

and electric fields around the hole and along the

interface of piezoelectric bi-materials  subjected

to remote mechanical and electrical loads are

presented.
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Fig. 1  Piezoelectric bi-materials with an elliptical cavity under electromechanical loading.
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Fig. 2  Boundary element discretization.
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2. Basic Equations

Consider a piezoelectric medium with a Carte-

sian coordinate system (x, y, z) defined such that

the z-axis is the poling direction as shown in Fig.1.

Constitutive relations for a piezoelectric material

subjected to plane-strain deformations in the x - z

plane, i.e. ∈xy = ∈yy = ∈yz = Ey = 0 can be expressed

as follows:

are dielectric constants under zero or constant strain.

Table1 presents the electroelastic properties of

PZT-4, PZT-5 and PZT-5H.

The constitutive equations for plane-stress

response (σxy = σyy = σyz = Dy = 0) can be obtained

from Eqs.(1) to (5) by replacing c11, c13, c33, e31, e33

and ε33 by (c11 − c12 /c11), (c13 − c12c13 /c11), (c33 − c13 /

c11), (e31 − c12 e31 /c11), (e33 − c13e31 /c11) and (ε33 +

e31 /c11) respectively.

The field equations for plane-stress/strain

response of a piezoelectric material can be expressed

by using the standard indicial notation as

in which Fi and ρe denote the body force in the

i -direction and a body electric charge respectively.

The strain-displacement and electric field-

potential relations can be expressed as

where ui and φ     denote the mechanical displacement

in the i-direction and electric potential respectively.

where σij, ∈ij,  Di and Ei  (i, j = x, z) are the compo-

nents of stress, strain, electric displacement and elec-

tric field respectively; c11, c13, c33 and c44 are elastic

constants under zero or constant electric field; e31,

e33 and e15 are piezoelectric coefficients; and ε11, ε33

(1)

(2)

(3)

(4)

(5)

σij,j  + Fi = 0;     Di,i =    e,     i, j = x, Zρ

(7)

(6)

2 2

2

PZT-4 13.9 7.78 7.43 11.3 2.56 13.44  -6.98 13.84 6.0 5.47

PZT-5 12.1 7.54 7.52 11.1 2.11 12.3 -5.4 15.8 8.170 7.346

PZT-5H 12.6 5.5 5.3 11.7 3.53 17.0 -6.5 23.3 15.1 13.0

*×1010 Nm-2; † Cm-2;    ×10-9 Fm-1.

Table 1  Material properties
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3. Boundary Integral Equation

For a linear piezoelectric medium of volume  Ω

and boundary Γ     , the following reciprocal relation

can be established:

σxx  =  c11    xx + c13    ZZ 
−e31EZ

∈ ∈

σ
ZZ  =  c13    xx + c33    ZZ 

−e33EZ
∈ ∈

σxZ  =  2c44    xZ −e15Ex∈

Dx  =  2e15    xZ +   11Ex∈ ε

D
Z  =  e31    xx +e33   ZZ  +   33EZ

∈ ∈ ε

ij  =     (ui,j + uj,i); Ei  =    i , i, j = x, Z∈ φ1
2

(8)
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where the superscripts (1) and (2) denote two inde-

pendent systems of field variables. In addition, τi

and q are traction components in the i-direction

and the surface charge respectively, in which,

(9)

(10)

C(x′) =   (1/2)I ,
x′ ∈ Ω
x′ ∈ Γ
x′ ∉ Ω

I ,

0,

and ni denotes the outward unit normal vector in the

i-direction.

Let the system (1) correspond to the actual

problem and the system (2) to the fundamental

solution. The reciprocal relation, Eq.(8), then

becomes the following integral equation:

in which, for a smooth boundary Γ, the coefficient

matrix C is given by

(11)

(12)

(13)

σ τij nj  = i ; Dini  = q , i, j  = x, Z

C(x′)U(x′) =  ∫G(x; x′)T(x)dΓ− 

   ∫H(x; x′)U(x)dΓ+

  ∫G(x; x′)F(x)dΩ 

where I and  0 denote an identity matrix and a zero

matrix respectively. In addition,

G = ;

Gxx

G
Zx

Gqx

GxZ

G
ZZ

GqZ

Gxq

G
Zq

Gqq

H =

Hxx

HxZ

Hxq

H
Zx

H
ZZ

H
Zq

Hqx

HqZ

Hqq
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In Eq.(13),  Gij (x; x´) and Giq (x; x´) denote the

displacement in the i-direction (i = x, z) at field point

x due to a unit load in the j-direction (j = x, z) and a

unit electric charge respectively applied at point

x´ ; Gqj (x; x´) and Gqq (x; x´) denote the electric

potential at field point x due to a unit load in the

j-direction (j = x, z) and a unit electric charge

respectively applied at point x´; Hij (x; x´) and  Hiq

(x; x´) denote the traction in the i -direction (i = x,

z) at field point x due to a unit load in the j-direction

(j = x, z) and a unit electric charge respectively

applied at point x´ ; Hqj (x; x´) and Hqq (x; x´) denote

the electric charge at field point x due to a unit load

in the j-direction (j = x, z) and a unit electric charge

respectively applied at point x´.

In this paper, the fundamental solutions appear

in the kernel matrices G and  H corresponding to an

infinite piezoelectric medium subjected to a unit

concentrated line load in the x-and z-directions and

a unit concentrated line electric charge given by

Rajapakse [12].

where ξ     denotes Fourier transform parameter; Mj

are a set of arbitrary functions to be determined from

the loading and boundary conditions; and  αj     (j=1,

2, 3) are the roots of the following characteristic

equation:

ux = j Mj (  )ei∫
1
2  π

ξ ξ ξβ
+ 3

j=1

8

− 8

Σ −αj ξ Z e dξ−i x

u
Z
 = j Mj (  )e∫

1
2  π

ξ ξ ξη
+ 3

j=1

8

− 8

Σ −αj ξ Z e dξ−i x

= j Mj (  )e∫
1

2  π
ξ ξ ξδ

+ 3

j=1

8

− 8

Σ −αj ξ Z e dξ−i xφ

in which ω1, ω2 and ω3 are real constants that

depend on the electroelastic properties of a

material. In addition,

6 +α 4α1ω + 2α2ω + 3 = 0ω

(14)

(15)

(16)

i  = (c13 + c44)(e33     jβ α α α2 − e15)
2 − c44)j − (c33 (e31 + e15)j

j  = (c11 + c44       )(e33     jη α 2 − e15) − c44)− (c13 (e31 + e15) j
2α j

2

j  = -(c44        −c11)(c44 − c33       )δ + c44)+ (c13 α j
22α j

2 α j
2

(17)

(18)

(19)

(20)

The solutions for stresses and electric displacements

can then be obtained from Eqs.(14) to (16) by using

Eqs.(1) to (5) and (7).

4. Numerical Implementation

In view of the complexity of the kernel matrices

G and H, Eq.(10) is solved by applying numerical

techniques. A numerical solution is obtained by

discretizing the boundary Γ into a total of  NE bound-

ary elements. For the mth boundary element (m = 1,

2,..., NE), the nodal values of the generalized

displacements and traction can be expressed as

 The solutions for displacements and electric po-

tential are expressed in terms of Fourier integral

transforms as follows:
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where

and n is the total number of nodes for the mth

element.

u = 〈u(1)    u(2)   ...   u(n)〉T ;  τ τ τ τ(2)

According to the above discretization, Eq.(10)

can be written in the absence of body force and

electric charge as

C(x′)U(x′) = Σ G(x;x′) NJdΓ (   )
NE

m=1 m

∫
∆Γ

η − Σ 
NE

m=1 m

∫
∆Γ

ητ

where J is Jacobian of transformation and η     is the

local coordinate. In addition, the shape function

matrix N for the mth element is given by

in which  N(i) (i = 1, 2,..., n) denotes the shape

function associated with the node i.

The numerical integration of Eq.(23) is

performed by using the Gaussian integration

technique. Special attention is required when the

load point x´ coincides with the field point x and x

the integration scheme presented by Watson [13] is

implemented to calculate singular integrals. After

performing the numerical integration over NE

boundary elements, Eq.(23) can be expressed in the

following form:

N = N(2) I N(n) I...N(1) I

where the elements of the matrices G and H are

obtained from the integrals of the first and the

second terms respectively appearing in the right

hand side of Eq.(23). Note that the C matrix in

HU = GT

(21)

(22)

(23)

(24)

(25)

(26)k

BH
k

IH
k

BG
k

IG

k

BT
k

IT

k

BU
k

IU
=

Eq.(23) is absorbed into the diagonal blocks of the

matrix H . In addition, U and T are column vectors

whose  elements are the nodal values of the gener-

alized displacements and traction respectively.

Consider a piezoelectric domain consisting of

two sub-regions with different material properties.

Both sub-regions are connected along an interface

ΓI as shown in Fig. 2. The equation system for a

sub-region  k (k=1, 2) can be written as

where UB and TB  denote the nodal values of the

generalized displacements and traction respectively

on the external boundary ΓB     that belongs to the sub-

region k ; UI  and TI  denote the nodal values of the

generalized displacements and traction respectively

on the interface ΓI that belongs to the sub-region k .

The compatibility and equilibrium conditions at

the interface ΓI require that

k

(27)

k k

k

1

IU
2

IU= ;
1

IT
2

IT= −
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According to the above interface conditions, the

final equation system then becomes

1

BH
1

IH
2

IH

1

I-G
2

IG0
2

BH

0
1

BG

0
2

BG

0
1

BT
2

BT

1

BU

IU

IT
2

BU

= (28)

The nodal solutions can be obtained by solving

Eq.(28) with appropriate boundary conditions. It is

noted that computations should be carried out with

high order of precision to handle ill-conditioning of

the matrix due to substantial difference in the order

of magnitudes of the kernel functions in the bound-

ary integral equation.

The solutions for displacements and electric

potential within the domain Ω     can be determined

by substituting the nodal solutions from Eq.(28) into

Eq.(23) with x´     ∈     Ω     . The solutions for stresses and

electric displacements within the domain can be

computed by substituting the nodal solutions from

Eq.(28) into the following equation with x´     ∈     Ω :

5. Numerical Results and Discussion

The numerical solution scheme based on the

boundary integral equation method described in

the preceding sections has been implemented into

a computer program to study piezoelectric bi-

materials with an elliptical cavity under remote

mechanical and electrical loading as shown in Fig.

1. The quadratic elements (three-node elements) are

used and the following non-dimensional quantities

are employed in the numerical results in this paper:

S = Dx D
Z

T
xx{ {σ

ZZ
σ

Zxσ (30)

(29)

First, the convergence and stability of the present

boundary element scheme are investigated with

respect to number of elements NE and the

dimension of the plane W (see Fig. 1). Non-

dimensional stress (σzz) along the x-axis of an

infinite PZT-4 plane with a circular hole (b/a = 1)

under remote tension in the z-direction (σzz = σ0 ) is

shown in Fig. 3

= /ijσ ijσ 0 ;σ = / Dij
*** σ ijσ 0

= /i 0 ;σ / DD iD* =iD iD**
0

= /i 0 ;σ / DE iE* =iE iE**
0

(31)

(32)

(33)

*

where S denotes the generalized stress vector

defined as

and the two matrices GSand HS are obtained by

differentiating the elements of matrices G and H

given by Eq.(13) respectively with appropriate

constitutive relations given by Eqs.(1) to (5).

8
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for different values of NE and W/a. The analytical

solutions given by Sosa [1] are also presented for

comparison. The boundary of the hole is traction-

free and completely insulated, and the plane-strain

condition is assumed. These conditions are

Fig. 3  Comparison of boundary element solutions.

Fig. 4  Comparison with analytical solutions.
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employed for all numerical results presented in this

paper. It has been found that numerically stable and

converged solutions can be obtained when NE ≥ 56

and the effect of the boundary on the solution

becomes negligible if W/a ≥ 50. Comparisons of
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non-dimensional hoop stresses (σθθ ;σθθ) and elec-

tric displacements (Dθ ; Dθ  ) around the circular hole

with Sosa’s solutions [1] are presented in Fig. 4 for

remote tension (σzz = σ0) and remote electric dis-

* **

* **

8

8

placement (Dz = D0 ) in the z-direction. It can be

clearly seen from Fig. 4 that the present BEM

solutions agree very closely with analytical

solutions for both mechanical and electrical loads.

6
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Fig. 5  Electroelastic fields around a circular cavity of different piezoelectric bi-materials.
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Electroelastic response of piezoelectric bi-

materials with an elliptical cavity at the interface

subjected to remote tension (σzz = σ0) and remote

electric displacement in the z-direction (Dz = D0) as

shown in Fig. 1 is presented next. Fig. 5 presents

electroelastic fields around a circular cavity (b/a=1)

of different piezoelectric bi-materials, PZT-5H/

PZT-5 and PZT-5H/PZT-4, and a piezoelectric

material PZT-5H subjected to remote tension and

electric displacement in the z-direction. The prop-

erties of all piezoelectric materials are given in

Table 1. Numerical results in this figure indicate

notable differences of electroelastic responses in

piezoelectric materials and bi-materials, especially

in the case of hoop stress under electrical loading,

in which σθθ  of the bi-materials (PZT-5H/PZT-5 and

PZT-5H/PZT-4) is much higher than that of

PZT-5H. On the other hand, higher electric

displacement around the cavity under remote

tension is observed in PZT-5H when compared to

that of the bi-materials. Note that  σθθ  and Dθ  for

all three cases are not much different. In addition,

the maximum electric field concentrations under

both mechanical and electrical loads are found in

the PZT-5H/PZT-4 bi-materials followed by

PZT-5H/PZT-5 and PZT-5H respectively.

8
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Fig. 6  Electroelastic fields around an elliptic cavity of PZT-5H/PZT-5 under remote tension.
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Fig. 6 presents electroelastic fields around the

boundary of an elliptical cavity (sθθ 
, Dθ 

, E
r
 and Eθ)

in piezoelectric bi-materials PZT-5H/PZT-5 under

remote tension in the z-direction for different

values of b/a (b/a = 0.25, 0.5, 1.0, 2.0 and 4.0). The

solutions under remote electric displacement in

the z-direction (σθθ 
, Dθ 

, E
r
  and Eθ 

 ) are shown

in Fig. 7. It can be clearly seen from Figs. 6 and 7

that electroelastic responses around the cavity

boundary depend significantly on the ratio b/a. The

solutions around the cavity boundary under remote

tension shown in Fig. 6 decrease with increasing

Fig. 7  Electroelastic fields around an elliptical cavity of PZT-5H/PZT-5 under remote electric displacement.
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the value of b/a and their maximum values are

found in the vicinity of the interface of the two

materials (θ = 0, π). Numerical results presented in

Fig. 7 for electrical loading indicate similar varia-

tion of circumferential electric displacement (D
q 
)

and circumferential electric field (E
q 
 ) with q. The

maximum values of D
q 
 and  E

q 
 are found near the

bi-material interface (θ = 0, π) and they decrease

with increasing the value of b/a. Hoop stress (σ
qq 

)

and radial electric field (E
r 
 ) are zero at the

bi-material interface (θ = 0, π). In addition, their

magnitudes along the boundary also decrease with

increasing the geometric ratio b/a except in the

vicinity of q = π/2 and 3π/2.

6. Conclusions

Boundary element method is employed to

investigate electroelastic responses of two-dimen-

sional piezoelectric bi-materials by utilizing a

sub-region model and a multi-region assembly.

Convergence, numerical stability and accuracy of

the present numerical solution scheme are estab-

lished by comparing with existing analytical

solution. Selected numerical results for electroelastic

fields of piezoelectric bi-materials with an ellipti-

cal cavity under remote tension and remote electric

displacement are presented. It has been found that

significant differences between electroelastic

responses of piezoelectric material and bi-materials

are observed especially in the case of hoop stress

under remote electric displacement. In addition,

stresses, electric displacements and electric fields

around the cavity depend significantly on the geo-

metric ratio b/a and the type of loading. Stress and

electric field concentrations decrease with increas-

ing the value of b/a under mechanical loading and

the maximum values are observed in the vicinity of

the interface. For electrical loading, the maximum

stress and electric field concentrations occur at dif-

ferent locations on the boundary depending on the

geometry of the hole.
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