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The local multiquadric collocation method is a meshless method that uses radial basis functions

known as multiquadrics to approximate functions and their derivatives. In this paper, buoyancy-driven

flow problems in a square cavity and a horizontal concentric annulus are solved by this method. The stream

function-vorticity formulation is used because there are only two unknowns in this formulation. However,

since the vorticity boundary condition is required, but not explicitly given, it must be determined by using

the definition of vorticity. A scheme for computing boundary vorticity that is appropriate to the local

multiquadric collocation method is presented. Results from the buoyancy-driven flow problem in a square

cavity show that the accuracy of solutions obtained by using this scheme is comparable with the accuracy

of solutions obtained by using a more accurate scheme. Furthermore, it is also shown that numerical results

of the buoyancy-driven flow problem in a horizontal concentric annulus for cases of Do/Di = 1.5 and 2.0, Pr

= 0.7, and RaDi between 10
5
 and 10

6
 by the local multiquadric collocation method agree with experimental

results
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1. Introduction

The point interpolation method introduced by Liu

[1] uses a few basis functions to approximate a

function and its derivatives in terms of functional

values at nearby nodes. Since this method requires

matrix inversion, basis functions must be carefully

chosen to avoid singular matrix. Polynomial basis

functions are a convenient choice, but experience

has shown that they may yield a singular matrix

when nodes are orderly arranged. An algorithm such

as the matrix triangularization method [2] is required

in this situation so that the modified matrix is

invertible. On the other hand, radial basis functions

yield non-singular matrix for virtually any node

arrangement. Radial basis functions are therefore a

better choice as far as the robustness of the method

is concerned. Multiquadrics is a well-known radial

basis function that was initially introduced for

multivariate data interpolation. It has recently been

used as basis functions for collocation methods.

Local multiquadric collocation method is the point

interpolation method that uses multiqudrics as

basis function. This method has been successfully

used to solve certain linear and nonlinear problems

[3 - 5].

Buoyancy-driven flow problems are nonlinear

problems that have been tested with several

numerical methods. These problems describe

natural convection phenomena in a variety of

geometries. The simplest problem is the

buoyancy-driven flow problem in a square cavity.

Although this problem is simple to describe and

formulate, it does not have the analytical solution.

Its simple geometry allows the use of the finite

difference method, which can be shown to solve the

problem efficiently. When the problem domain is

irregular, however, the implementation of the finite

difference method may be awkward. By contrast,

the local multiquadric collocation method can handle

an irregular geometry more efficiently.

This paper is concerned with solutions to

buoyancy-driven flow problems in the stream

function-vorticity formulation by the local

multiquadric collocation method. Two-dimensional

buoyancy-driven flow problems may be solved in

three formulations: the primitive-variable

formulation, the velocity-vorticity formulation, and

the stream function-vorticity formulation. The

stream function-vorticity formulation is arguably the

most efficient formulation of the two-dimensional

Navier-Stokes equations because it reduces the three

continuity and momentum equations of pressure and

two velocity components into two equations of

stream function and vorticity, whereas the other two

formulations yield three equations of three

unknowns. The following sections present the

mathematical formulation of buoyancy-driven flow

problems, the implementation of the local

collocation method to solve these problems, and

numerical results that demonstrate the effectiveness

of using this method to solve natural convection

problems in a square cavity and a horizontal

concentric annulus.

2. Governing Equations

Two-dimensional buoyancy-driven flow

problems are governed by the following continuity,

momentum, and energy equations:

(1)
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where ρ is density, µ is dynamic viscosity, α is

thermal diffusivity, and g is gravitational accelera-

tion. Initially, the fluid temperature is uniformly T0.

At time t′ > 0, part of boundary is subjected to

isothermal boundary condition T
w
, part of boundary

is kept at the initial temperature, and the other part

of boundary is insulated.

In Boussinesq approximation, ρ is assumed to

be constant in Eqs. (2) and (3) except in the source

term of Eq. (3), where ρ is approximated as

(5)

Thermal expansion coefficient is defined as

(6)

Insert ρ from Eq. (5) into the source term of Eq. (3),

and combine the resulting equation with Eqs. (1)

and (2) into two equations of stream function

an vorticity        :

(2)

(3)

(4)

(12)

(7)

(8)

Equation (4) may be rewritten as

(9)

where

(10)

(11)
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Once       has been determined, the approximation of

a partial derivative of f with respect to x or y can be

expressed in terms of functional values at all nodes.

For example,

Assume that L is the characteristic length scale for

the problem. Let's define the following dimension-

less variables: x = x′/L, y = y′/L, t = αt′/L2, u = u′L/

α, v = v′L/α, T = (T′-T
0
)/(T

w
 - T

0
), ω = αω′/L2, and

            Eqs. (7) - (9) may be written in the

following dimensionless forms.

(13)

(14)

(15)

where Rayleigh number is Ra = gβ|T
w
 - T

0
|L3/α2,

and Prandtl number is Pr = v/α.

3. Local Multiquadric Collocation

Method

Let node 1 be where the partial derivative of a

function ƒ is to be discretized. Consider a group of

N interpolation nodes, which include node 1 and

other N - 1 nodes that may be selected by their

proximity to node 1 or by another criterion. A given

functional value at each node may be approximated

by

(16)

(17)

(19)

(20)

which can be solved for the vector of coefficients.

is the radial basis function known as multiquadrics.

The constant ξ is the shape parameter. Although its

value may affect the accuracy of the method,

Chantasiriwan [3] showed that the method is

relatively insensitive to the value of the shape

parameter over a fairly large range. Eq. (16) is a

component of the matrix equation,

(18)

can be written as

(21)

The first row of this matrix equation is thus the

desired discretization of the partial derivative of f

with respect to x at node 1. Therefore, this method

where
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can be used to express partial derivatives of f at any

node i in terms of values of f at node i and N - 1

other nodes.

(22)

(23)

(24)

(25)

Right hand sides of Eqs. (22) - (25) are summations

over all nodes j in the domain. It should be noted

that, in each of Eqs. (22) - (25), most of coefficients

in are zero except for N coefficients corresponding

N selected nodes.

Discretization of Eqs. (13) - (15) at an interior

node i using the local multiquadric collocation

method and the implicit time-stepping scheme

results in the following nonlinear algebraic

equations:

(26)

(27)

(28)

where superscript m denotes time m∆t. In addition

to Eqs. (26) - (28), algebraic equations resulting from

discretization of boundary conditions for     , T and

ω are needed. Usually, boundary conditions for

and T are given. The boundary condition for

ω may be determined from velocity components

according to Eq. (10). However, since boundary

condition for an arbitrary boundary is usually

specified in terms of velocity components normal

and tangent to the boundary (u
n
 and u

t
), it is more

convenient to calculate boundary vorticity from

(29)
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If the boundary is impermeable, u
n
 = 0. For the

purpose of discretizing Eq. (29), let node 1 be the

boundary node where boundary vorticity is to be

computed, and the other N − 1 be nearest interior

nodes. As shown in Fig. 1, boundary nodes nearest

to node 1 are excluded from this selection.

If n = n
x 
x + n

y
 y , the discretization of a partial

derivative of     with respect to n may be written as

Fig. 1  Six nodes used for discretization of the vorticity boundary condition are the boundary node

and 5 nearest interior nodes. All selected nodes are designated by solid circles.

(30)

where

The expression for boundary vorticity at node 1 is

then

(31)

(32)

ˆˆ ˆ

It can be shown that the relations and lead to

       and                     lead to

Eq. (33) allows the replacement of u
t,2

, u
t,3

, ..., u
t,N

 at

interior nodes in Eq. (32) with terms containing only

stream function.

(33)
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where

(34)

(35)

The system of nonlinear equations formed by the

above governing equations and boundary condi-

tions must be solved by iteration. The iteration

process starts with                                  at interior

nodes. The successive over-relaxation method

(SOR) is then used to find                  The

iteration process is continued until  convergence

when the solution reaches the steady state. It was

proven by Broyden [6] that this method is capable

of giving converged solution if a suitable relaxation

parameter is chosen.

4. Natural Convection in Square Cavity

A famous benchmark natural convection

problem is the buoyancy-driven flow problem in

square cavity. This problem is therefore used to test

the performance of the local multiquadric colloca-

tion method. As shown in Fig. 2, the two horizontal

sides of the cavity are insulated, and the two

vertical sides are kept at two different temperatures.

The length scale in this problem is the width of the

cavity. Since the exact solution of this problem is

not available, a numerical solution by the local

multiquadric collocation method must be compared

with the benchmark solution. Erturk and Gokcol [7]

have obtained highly accurate solutions to the

lid-driven flow problem by using the finite

difference method and the vorticity boundary

condition suggested by Stortkuhl et al. [8]. For the

node arrangement shown in Fig. 3, boundary

vorticity is computed as follows.
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where ∆ is grid spacing, and V is the horizontal

component of the boundary velocity. Note that

is omitted in Eq. (36) because stream function is

zero on the boundary. Expressions for boundary

vorticity at other sides of the cavity can be similarly

obtained. Fortran codes for solving to the lid-driven

flow problem by using the finite difference method

are available at http://www.cavityflow.com. These

codes are modified by the author of this paper to

solve the buoyancy-driven flow problem in a square

cavity. Results on 161 × 161 square grid obtained

for velocity components (u and v) and heat flux (q

= −∂Τ/∂x) at selected points are considered to be

benchmark solutions. Fig. 4 shows these results for

Pr = 0.7 and Ra = 1000, 10000, and 100000.

Fig. 2  Buoyancy-driven flow problem in a square cavity.

(36)
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The problem is then solved by the local

multiquadric collocation method using the vorticity

boundary condition corresponding to Eqs. (34) and

(35). For the purpose of assessing the degree of

accuracy of this method, it is useful to define error

as the absolute value of the difference between the

numerical solution by the local multiquadric

collocation method (f) and the benchmark solution

(f
e
) divided by f

e
:

where f represents u, v, or q. Errors of solutions by

the local multiquadric collocation method are

computed for Pr = 0.7 and Ra = 1000, 10000, and

100000. It can be seen from Fig. 5 that the local

multiquadric collocation method is capable to

producing fairly accurate solutions to this problem.

Fig. 3  Boundary nodes and nearby interior nodes at the bottom side of the square cavity.

(37)
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Fig. 4  Benchmark solutions for (a) the horizontal velocity component along the vertical line passing the

center of the square cavity; (b) the vertical velocity component along the horizontal line passing the

center of the cavity; and (c) the horizontal heat flux along the left wall of the cavity.
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Fig. 5  Errors in (a) the horizontal velocity component; (b) the vertical velocity component; and (c) the

horizontal heat flux of solutions by the local multiquadric collocation method.
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5. Natural Convection in Horizontal

Concentric Annulus

Another natural convection problem that has

received considerable attention in the literature is

the natural convection problem annular space

between two horizontal centric cylinders having

infinite length. As shown in Fig. 6, the surfaces of

the two cylinders are maintained at two different

Fig. 6  Buoyancy-driven flow problem in a horizontal annulus.

uniform temperatures, and both cylinders are

stationary. This problem has been considered by

Raithby and Hollands [9]. Their correlation based

on the thickness of the annular space has been

rewritten by Bejan [10] as a correlation based

diameters of the inner and outer cylinders:

(38)
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where Q is heat transfer per unit length of the

cylinders. Note that the length scale of the Rayleigh

number in this correlation is the diameter of the

inner cylinder (Di). The expression of heat transfer

by natural convection analogous to that of heat

transfer by pure conduction is

(39)

Thus, the ratio k
eff

/k indicates the enhancement of

heat transfer due to natural convection. The corre-

lation in Eq. (39) is valid only when this ratio is

larger than one.

This problem is solved by the local multiquadric

collocation method. Instead of solving this problem

in the cylindrical coordinates as done by some

previous works, which necessitates the use of

another set of governing equations, it is more

convenient to solve this problem in the rectangular

coordinates as given by Eqs. (13) - (15) with the

length scale being the diameter of the inner

cylinder. Fig. 7 compares numerical results for k
eff

/k

with experimental results as represented by

correlation in Eq. (39), and shows that numerical

results agree with experiment results.

Fig. 7  Comparison between experimental and numerical values of k
eff

/k.
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6. Conclusions

The implementation of the local multiquadric

collocation method for solving buoyancy-driven

flow problems in the stream function-vorticity

formulation is described in this paper. A scheme for

imposing vorticity boundary condition is presented,

which expresses boundary vorticity at a boundary

node in terms of boundary velocity at the bound-

ary node and values of stream function at nearby

interior nodes. The local multiquadric collocation

method is used to solve two buoyancy-driven flow

problems. The first problem is the natural convec-

tion problem in a square cavity, of which two

horizontal walls are insulated and two vertical walls

are maintained at two different temperatures. The

second problem is the natural convection in the

annular space between two long concentric

cylinders maintained at two different temperatures.

It is shown that the performance of the method

in solving both problems is good. Since the

effectiveness of this method has been demonstrated,

it should be considered as an alternative to

conventional  methods like the finite element method

and the finite volume method for solving buoyancy-

driven flow problems in an arbitrary geometry.
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