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The SNN-Based Predictive Model for HGA Manufacturing

 Product types in the hard disk drive (HDD) industry have different specifications depending on the

customer orders.  These specifications along with the machine parameters have a direct impact on the

production yield.  The problems on the manufacturing line are called the çroot causeé. By accurately

identifying the root cause, the engineers can suggest yield improvement solutions.  Our research focus on a

design of the effective prediction technique required at the end of the analysis steps in order to validate the

suggested solution by simulation. Initially, we developed a çCé program based on a multiple regression

technique and tested it
,
s validity toward prediction accuracy. From the experimental results, we could

conclude that the multiple regression method (up to 10 polynomial degrees) did not produce a sufficiently

good result. The method gave a high error rate for fault prediction.  The Hard Gimbal Assembly (HGA)

yield prediction is proved to be non-linear. Therefore, we adapted the Stochastic Neural Networks (SNNs)

for use with the yield prediction. The inputs of our model consist of several machine parameters and

specification attributes. Our version of SNNs can approximate a complex non-linear system. The genetic

algorithm is used as a learning algorithm instead of the backpropagation method in order to handle the

non-linear and stochastic relationships between input parameters. Our prediction model can then be used to

validate and revise the yield improvement plan. The output of the prediction model is the yield rate. From

SNNs' results, we can conclude that our initial version of SNNs gave a favorable prediction results with

very low error rates.  The model can thus be used as a simulation tool for yield improvement without having

to actually implement the solution on the production line.

Keywords : Stochastic Neural Networks / Multiple Regression /Yield Prediction Technique
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1. Introduction

In disk drive manufacturing, every product type

has a different product specification depending

on customer demands. These specifications have

a direct impact to the production yield. Products

with higher specification are generally harder to be

manufactured and can cause the yield degradation.

Moreover, machine quality in both production and

testing lines, as well as human errors can also

degrade yield. In order to improve yield, the çroot

causeé of the problem in manufacturing must be

analyzed.

Currently, most disk drive companies have their

own tools for yield improvement analysis. However,

the analysis processes lack automated tools and

depend heavily on the expertise of the engineers and

the specialists. In order to reduce the man power and

analysis time needed, the automate yield analysis

framework should be designed and implemented.

This paper focuses on the prediction technique

required at the end of the analysis steps.  After çroot

causesé that include machine parameters and

product specifications are identified, the suggestive

plan for yield improvement can be drawn from the

tool set. Our prediction model is used to validate

and revise the yield improvement plan. The output

of the prediction model is the yield rate and

the inputs are many possible root causes of the

manufacturing problem. Our work can be used

as a prediction tool for yield improvement without

having to actually implement the solution on the

production line.

In general, the linear regression approach has

been commonly used for data mining applications

in manufacturing plants [1-4]. However, many

applications, such as yield prediction and optimiza-

tion, may have inputs that are random in nature. The

problems can be unpredictable and non-linear [5].

Such applications require more complicated

models. In those cases, the Neural Network-based

models are often explored to cope with the stoch-

astic components [6].

The characteristics of Hard Gimbal Assembly

(HGA) data are dynamic because machine para-

meters and specification attributes may change on a

daily basis. A set of inputs may be paired with

all possible output yields. The probabilities of

occurrences can also be varied. We thus suspected

that the simple linear regression method may not

yield a good result [7].  In order to validate that

assumption, we experimented with a multiple

regression (MR) model of different polynomial

degrees to study the nature of the manufacturing data

as well as to discover whether the model can fit

the data.  After finding out a flaw in adopting the

regression technique, we design an algorithm and

implement a program for SNN-based predictive

model. Our prediction model and the accuracy

analysis are presented in this paper.

The rest of the paper is organized as follows.

Section 2 presents the related research in SNNs.

Several Stochastic Neural Network-Based

approaches are discussed and compared. Section 3

describes our initial experiments with the multiple

regression methods using the actual HGA manufac-

turing data. The discussions and concluding remarks

in multiple regression methods are also provided.

Section 4 describes our general design framework

of SNNs for automate yield analysis with the

emphasis on yield prediction model. Then the

experiments and results of Stochastic Neural

Networks are discussed in section 5. Finally, in

section 6, conclusions and future work are discussed.
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2. Related Research

Neural Network-Based approaches have been

widely used in data mining applications, such as

manufacturing yield prediction, optimization, and

plant design. Many efforts have been put into

applying neural networks (NNs) [8] to create

decision support systems. Numerous examples were

presented in recent literature. For example, in the

study of Baba and Yanjun [9], a new model was

created by combining NNs with Genetic Algorithm

(GA). The model was then used to predict the

highest and the lowest future values for Japan
,
s

stock exchanges. However, many applications have

inputs that are random in nature. A regular ANNs

may not be able to accurately model such behavior.

Thus, Stochastic Neural Networks (SNNs) [10-13]

was introduced. SNNs are able to cope with the

stochastic components. Models in SNNs are

possible to be trained by the backpropagation

method, which can be extended with stochastic

resonance features.

SNNs are generally used for minimizing the

redundancy between elements in the output layer

using a learning algorithm, which is extended from

the unsupervised learning principle of Barlow

[14]. The algorithm was designed based on the

probabilistic non-linear neurons and can be used for

a network with recurrences. The learning algorithm

interprets a weighted combination of Hebbian and

anti-Hebbian rule [15].  This approach performs

a non-linear and a factorial feature extraction,

by maximizing the mutual information between

sensory inputs and output[5].

The study of Tanaka [16] extended the SNN

model to handle non-linear systems with missing

data. The stochastic model was used to estimate

outputs even with missing elements in the input

vectors within a condition estimation framework.

The Expectation-Maximization (EM) algorithm was

used to estimate the model parameters [16]. The

study of Polvichai et al. [11] used SNNs with genetic

algorithm to learn a large data set consisting of

probabilistic relationship between configurations,

environments and performance metrics. The optimal

configuration, leading to a better quality solution,

in new scenarios was derived.

SNNs were used most in prediction systems.

Kamitsuji and Shibata [13] have developed an effi-

cient training algorithm to maximize the likelihood

of a neural network. This algorithm allowed the

SNNs to be applied to a practical problem, such as

the prediction of stock price index. Chryssolouris

[17], on the other hand, he used neural networks to

identify the important relationship of decision

criteria. In his work, NNs are used to establish

adequate weights of the criteria for the decision-

making process. The proposed idea was capable of

determining suitable criteria weights for the entire

sequence of multiple-criteria decisions. His work,

however, was better suited to the complex applica-

tions involving chains of decisions.

Polvichai and Khosla [18] used a genetic algo-

rithm to create a dynamic neural network. In order

to solve the non-deterministic tasks, they presented

a new concept; a dynamic network that mapped all

possible input and output patterns with different

probabilities of occurrences.

In addition, NN models can be used in manufac-

turing applications. An example was presented in

[6]. In their work, the NN-based algorithm was used

to predict the wafer yield in Integrated Circuit (IC)

manufacturing. As the wafer size was increased, the

clustering phenomenon of the defects became

increasingly apparent. The fuzzy ART network for

the clustering analysis was thus used to adjust

the number of wafer defects and the Poisson
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distribution was used to predict the wafer yield.

In this work, we attempt to predict the HGA yield

in the disk drive manufacturing line. The problem

is non-linear and stochastic as machine parameters

and specification attributes may change on a

daily basis. A set of inputs may be matched with

all possible output yields. The probabilities of

occurrences can also be varied. Thus, we choose

to explore the concept presented in [6, 18]. The

detailed framework of our adapted algorithm will

be presented in section 4 following the discussion

on initial experiments of multiple regression.

3. Initial Experiments with Multiple

Regression

In order to investigate whether a simple regres-

sion model was sufficient in our problem domain,

we have developed a custom çCé program to auto-

matically fit data into curves of various polynomial

degrees. The input parameters are the learning data

set, the testing data set, a selected threshold, and

the maximum polynomial degree. The learning and

testing data sets are obtained from actual HGA

manufacturing data records (instances).

Our program can calculate the regression coef-

ficients based on sets of input parameters and the

learning data set. Once the model is formulated, the

testing data set is used to evaluate the regression

model. Each polynomial degree has its regression

equation. Our program automatically generates all

possible regression equation terms using the Brute

force technique. Finally, the program produces a set

of confusion matrix for each regression equation.

The dataset used in our experiments are the top

5 defect attributes which affect the Hard Gimbal

Assembly Electrical Test (HGA ET), which is one

of the QA parameters in HGA manufacturing. The

objective of the regression model is to predict

whether the HGA ET test on products will pass or

fail. The data records obtained for our initial ex-

periment were from 7 consecutive manufacturing

days. We used 5,012 records of data which is

sampled. The çPASSé class has 4,283 instances and

the çFAILé class has 729 instances. This particular

dataset gave a yield of 85.45 percents and the

percentage of the HGA ET failure is equal to 14.55.

Ten percents of the dataset (501 instances)

selected randomly were used as the testing set and

the remaining records (4,511 instances) were the

learning set used for least square fitting of the model.

The least-square parameters (regression coefficients)

were then estimated using pseudo inverse. Follow-

ing this, the equation that construct from those

coefficients was used as the initial prediction model

in our experiments. Then, different polynomial

degrees were experimented with.

In the predictive analysis, we used a table of

confusion (also known as a confusion matrix).

The true positive value refers the number of the

right prediction items in the çPASSé class. The false

positive refers to the number of the wrong

prediction items in the çPASSé class. False negative

items are the number of wrong prediction in the

çFAILé class, while true negative refers to the right

prediction in the çFAILé class.

In our experiments, items were deposited in the

PASS class if the ŷ value was more than or equal to

0.6. Otherwise the items were considered a part of

the FAIL class. The value of 0.6 was the threshold,

which gave the maximum accuracy percentage,

obtained empirically.

From the initial experiment, the total accuracy

calculated was 93.6 percent, which looked satisfac-

tory. However, from our data set, the number of

items in the PASS class was a lot larger than that of

the FAIL class. The correct prediction of the PASS



«“√ “√«‘®—¬·≈–æ—≤π“ ¡®∏. ªï∑’Ë 33 ©∫—∫∑’Ë 3 °√°Æ“§¡ - °—π¬“¬π 2553190

items could thus dominate the total accuracy. The

accuracy of the FAIL class prediction was only

63.2 percent. In a new manufacturing line where

unpredictability of the fail rate can be assumed, the

36.7 prediction error rate will not be acceptable. In

other words, the prediction model should weight the

importance of the true negative and true positive

equally and the high prediction rate should be

observed for both the PASS and FAIL classes. In

conclusion, the regression model failed to predict

the true behavior in the manufacturing line and the

higher total accuracy did not imply the better

prediction rate in the FAIL class. Fig. 1 shows the

scatter plot of the prediction results.

Fig. 1  Prediction results

The y-axis represented the HGA ET values. The PASS and FAIL classes were marked at 1.0 and 0.0 respectively.

Fig. 2  The prediction results with various polynomial degrees.
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The threshold of 0.6 was used to classify the

results. The plot showed that the prediction values

were scattered along the y-axis with no clear

distinction between pass and fail items. The results

implied that the model was not good enough for use

in yield prediction even with the empirical obtained

threshold.

We then extended our experiments to cover

higher polynomial degrees (from 1 to 10). Fig. 2

showed the percentage of the total accuracy and

the wrong prediction on FAIL class. The X-axis

represented various polynomial degrees. When the

maximum polynomial degree used was 10, the

error rate of the FAIL class prediction was low (1.47

percents), however, the overall accuracy also

dropped to 41.118 percent.  There was no pattern or

relation between the FAIL class error rate and the

overall accuracy. These results implied that using

multiple polynomial degrees did not improve the

prediction accuracy.

From a set of experiments discussed, we can

see that using the multiple regression method

on our dataset produced poor results. The method

gave a high error rate for fault prediction. Various

polynomial degrees (1 to 10) were also explored

and the results were not favorable. We can conclude

that the HGA yield prediction is a non-linear

problem as suspected.

4. A Design Framework of SNNs for

Automatic Yield Prediction

The general design framework for an automatic

yield prediction is described in this section. The

HGA data retrieved from a company
,
s data ware-

house are used as inputs for the prediction model.

These data are generated from a combination of

many machine parameters and specification

attributes. Examples of the machine parameters

include the value of resistance, amplitude, and

frequency. The HGA specification examples given

by customers include write resistance and write

width.

From our initial research, we discover that the

output of the predictive model can be different,

though the inputs are the same. There is also a high

variation for the output values. Thus, the output

should be presented in the form of the probabilities

of occurrences. The yield prediction method of such

complex data is non-deterministic and non-linear

making SNN-based algorithm a method of choice.

There are three key ideas in our SNN-based

algorithm design as described below:

Fig. 3  Learning step.
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Key idea #1:  extra input nodes are added to the

input layer.  The extra input nodes are fed with

random signals, which are uniformly varied between

0.0 and 1.0. The random signal values are mapped

to the possible HDD yield rate represented by

machines parameter and customer specifications.

Each iteration uses a new set of random signals. All

nodes in the network use the sigmoid units.

Key idea #2: backpropogation is replaced with

the genetic algorithm. The genetic algorithm is

chosen because the relation between parameters and

specifications are non-linear and stochastic. All

weight sets of the SNN connections are randomly

generated at the start. The new set of weights is

generated repeatedly using three genetic operators:

reproduction, crossover, and mutation until the

best weight set of SNNs is found. Fig. 3 shows

the pseudo-code of the learning method and the

description is given below.

Line 1 of Fig. 3 (3.1) randomly generates an

initial weight population for training SNNs. Then

the machine parameters and specification attributes

are sampled to be used as the new training data. In

general, if the training and the testing set of SNNs

are too large, a subset of data is randomly selected

and used. The sub-sampling step is performed to

avoid over-fitting due to the local minima problem

(3.4). The new generation of chromosome is then

created by performing crossover and mutation of

the top 5 percentile best genes from the previous

generation.  The probability of 0.001 is used in this

step (3.5). In step (3.6), the generated genes are used

as weight sets. The sampled HGA data are then

divided into 2 subsets, where the first subset is used

in training and the last subset is used in testing. The

average error is computed and used as the weight

set (chromosome) error. In step (3.7), all weight sets

are evaluated using chromosome error. The highest

score will be assigned to the weight set which has

the least error. The results are fitness values of all

chromosomes. The values are then used to rank all

weight sets. The top rank weight set is considered

to have the best performance score. This ranking

information is mainly used for creating a new

generation (3.8). The learning procedure will be

terminated when the errors between generations do

not vary more than a pre-defined threshold.

Fig. 4  The new stochastic neural network model.
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Key idea #3: the output of the neural network

model will be non-deterministic. The root causes of

HGA manufacturing failure will be used as inputs

of the model. The same set of inputs will be fed

through the model 10,000 times with different

random signals. Each time, the output will vary. In

other words, SNNs will generate an uncertainty

distribution of the output data. The distribution

of possible yields can thus be generated more

accurately. Fig. 4 describes our SNN model. Our

SNN model consists of three layers: input, hidden

and output layers. The input nodes are machine

parameters and specifications.  R1 though R5 are

the extra randomly generated input signals with the

values between 0.0 to 1.0.  These random signal

values are mapped to possible yield rates represented

by HGA parameters and specifications. Different

functions will be created for nodes in the hidden

layers, which will be used to generate the manufac-

turing yield in the output nodes.

In our design, numbers of input nodes can vary

depending on number of interested root causes of

failure in a production each day. The prediction

process in each day will start by comparing a set of

inputs between previous and current day. If the lists

of parameters are different drastically, the model

must be trained again. The new set of weights in

SNNs will be re-computed. The framework also

has a mechanism to save the weight set for any

particular input parameter list. Thus, re-learning

process will only be required for a brand new

parameters list.

5. Experiments and Results

Actual manufacturing data records were obtained

for our experiment. The data used are from the

manufacturing of the disk drive. We used the total

of 185,000 sample records, which were retrieved

from seven days of manufacturing.

In our experiment, we configured the SNNs to

have 4 layers. The top 5 critical parameters and 1

random signal were used as input nodes in the first

layer (input layer). The second and third layers were

hidden layers with 8 nodes each. The last layer

is the output layer with only one output node

referring to the yield prediction result. The number

of weight used in this model was 120, 48 were

used in the first layer, 64, 64, and 8 in the second,

third and fourth layers respectively. Each weight

represents a gene and 120 genes represent a

chromosome. All chromosomes can be permuted to

create 115 million initial chromosomes populations.

During the learning process, chromosome values

were randomly generated. From our empirical study,

the appropriate values were between -40.0 to 40.0.

100,000 data records were then randomly selected

to be used as the training data.  In the learning step,

the new generations of genes were created by

crossover and mutation the top 5 percentile best

genes from the previous generation. The algorithm

proceeded as described in the previous section. The

estimated errors between iterations were computed.

The learning procedure was terminated when the

errors between generations equal to or less than 5

percent. When the learning process terminated, we

used the best gene as our SNNs weight set. The

best prediction result from our SNNs showed a

0.61% error rate on a çFAILé class. The worst case

prediction produced a 2.57% error rate on a çFAILé
class. This is no error rate on a çPASSé class.

We also configured a network structure of ANNs

with a standard backpropagation in order to be used

as a baseline for comparison with our SNNs results.

The same data sets were used.

The learning procedure was terminated when the

errors between actual output and predictive result
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equal to or less than 5 percents. When the learning

process was terminated, the best prediction result

from ANNs showed a 6.72% error rate, while the

worst case prediction produced a 28.41% error rate

on a çFAILé class. Therefore, we can claim that

using our SNNs-based algorithm, the predictive

performance could be improved by 10 times over a

regular ANNs model.

Referring to the initial experiments with

multiple regression, we can also see that the method

gave a high error rate for fault prediction than SNNs

(32.35% compare to 2.57% in worst case).

Table 1  The comparison of error rate on fail class.

From these results, we can thus conclude that

our version of SNNs gave a favorable prediction

results with very low error rates. However, the data

records obtained for our initial experiments were

from 7 consecutive manufacturing days. Low

variation in environments, specifications, machine

configurations were observed. The prediction can

thus be performed accurately. In order to deploy our

model on the actual manufacturing floor, several

parameters still need fine tuning. Moreover, the

execution of the training phase was still rather slow

and a parallel computation model should be designed

and applied in the future.

6. Conclusions and Future Work

In this paper, we described a version of SNNs-

based algorithm with the implementation of the

genetic algorithm to solve the problem related to

manufacturing yield prediction. Our experimental

data is the HGA manufacturing data retrieved

from an actual data warehouse. In our design and

implementation, the number of input nodes can vary

depending on the number of root causes identified.

Thus, the SNNs can change and a model re-training

will be needed periodically. In addition, the random

signal is used as extra inputs in order to generate

stochastic signals. Each training iteration uses

difference random signal set. The sigmoid function

is used as an activation function.

We then compared the predictive accuracy among

the multiple regression technique, the regular ANNs

model, and our version of SNNs-based algorithm.

The results showed that the SNNs algorithm

outperformed both regressions and ANNs models

by more than 10 times, when the error rate was used

as a measurement index. The results verify that

after the root causes of the yield degradation are

identified and the yield improvement solution is

suggested, the engineers may use our prediction

model to evaluate the solution quality.

However, our version of SNNs is highly compute-

intensive. In order to improve the execution time to

the point where the program is practical for use on

the manufacturing line, a parallel programming

technique is explored.  Currently, we are designing

a data parallel algorithm that can be deployed on a

shared memory, multi-core and multi-processor

system. The thread programming model with open

MP library will be adopted in our implementation

plan. We believe that our implementation can

benefit HDD manufacturers in the future.
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