
วารสารวิจัยและพัฒนา มจธ. ปีที่ 34 ฉบับที่ 2 เมษายน - มิถุนายน 2554 91

1	 อาจารย์	ภาควิชาครุศาสตร์เครื่องกล	คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

 E-mail : pichet.pin@kmutt.ac.th

การจำาลองเชิงโฟโตอิลาสติกเพื่อการศึกษาปัญหา                                          
คานสี่เหลี่ยมที่มีฐานรองรับอย่างง่ายรับแรงเข้มกดที่กึ่งกลางคาน             

              

พิเชษฐ์  พินิจ1

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี แขวงบางมด เขตทุ่งครุ กรุงเทพฯ 10140

บทคัดย่อ

 ปัญหาการกระจายความเค้นในคานหน้าตัดสี่เหลี่ยมเป็นปัญหาที่น่าสนใจอย่างยิ่งในทางปฏิบัติเนื่องด้วย

โครงสร้างส่วนใหญ่ล้วนประกอบไปด้วยคาน บทความฉบับนี้นำาเสนอแบบจำาลองทางคณิตศาสตร์ในลักษณะทั่วไปของ

ปญัหาความเคน้ระนาบของคานหนา้ตดัสีเ่หลีย่มรบัแรงเขม้กดทีก่ึง่กลางคานตามหลกัทฤษฎขีองแบรน์ลูล-ีออยเลอร ์ทฤษฎี

ของวลิสนั-สโตกส ์และทฤษฎดีรูนั-การว์ดู และนำาเสนอการจำาลองเชงิตวัเลขของสนามความเคน้โดยอาศยัหลกัการของโฟ

โตอลิาสตกิซติเีชงิเลข นอกจากนีบ้ทความยงัไดแ้สดงแผนภาพอืน่ใดทีเ่กีย่วขอ้งกบัความเคน้ ผลจากการคำานวณเชงิตวัเลข

และการเปรียบเทียบพบว่า ทฤษฎีดูรัน-การ์วูด แสดงภาพสนามความเค้นและแผนภาพที่เกี่ยวข้องได้ดีกว่าภาพที่ได้จาก

สองทฤษฎีแรกในด้านของความราบเรียบและความต่อเนื่องของริ้ว อย่างไรก็ดี ทฤษฎีแบร์นูลลี-ออยเลอร์ก็ยังเป็นทฤษฎีที่

ให้ความปลอดภัยหรือทฤษฎีเชิงอนุรักษ์สำาหรับพื้นที่ส่วนใหญ่ของคานยกเว้นบริเวณจุดที่แรงเข้มกดกระทำา
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Abstract

 The problem of stress distribution in a rectangular beam is of great practical interest as the beam 
is used in most structures. This paper presents general mathematical models of a plane-stress problem of 
a rectangular beam subjected to a concentrated force at its midspan based on three major theories: the 
Bernoulli-Euler theory, the Wilson-Stokes theory, and the Durant-Garwood theory, and the simulation of 
the stress field on the basis of the principle of digital photoelasticity. Several relevant maps of stresses are 
also presented. Comparison of numerical results from these theories reveals that the Durant-Garwood theory 
gives the stress field being superior to those obtained from the first two theories in the senses of fringes’ 
fineness and continuity. Furthermore, the Bernoulli-Euler theory is shown to be a conservative theory for 
most regions in the beam except at and near the point of the applied concentrated force.

 Keywords : Digital Photoelasticity / Fringe / Isochromatics / Isoclinics / Isopachics / Map / Simply 
  Supported Rectangular Beam
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1. Introduction
 Beams with various cross sections are used in 
several structures such as engines and buildings. 
Their primary use is to support transverse loads that 
result a bending and a deflection; these two factors, 
in turn, have a strong effect on a design of beam in 
such a way that the bending and deflection lead to 
suitable shape and stiffness, respectively.
 A rectangular beam (Fig. 1) is one of the cross 
sections being often used; it can be broadly clas-

sified into two types: a narrow (long) beam and a 
deep (short) beam. The difference in the types of 
the rectangular beam is identified by the half of 
span-to-depth ratio, l/c , (Fig. 1). If the ratio is just 
larger than 3 the beam is justified to be the narrow 
beam; otherwise, it is the deep beam [1]. Correct 
identification of the types of beam is of importance 
in that it helps designers simply making a decision 
of which theories (described next) dominating the 
design of beam.

Fig. 1 Geometrical shape and loading condition of the beam used in the Bernoulli-Euler Theory and 

Wilson-Stokes theory (after Frocht [2]).

 Designers use the elementary or technical 
beam theory (the so-called Bernoulli-Euler theory, 
BET) to design the beams as the theory is simple 
and always safe [2]. In view of a stress field, this 
theory, however, neither furnishes correct stress 
distribution near points of applied load and the  
reactive supports nor accounts for a localized  
effect of concentrated load acting on the beam in 
spite of the fact that the concentrated load causes 
high values of stresses. The substantial difference 
between the results obtained from the photoelastic 
experiment and the BET exists, especially along the 
lower edge, and leads to the following aspects [3].

•  The actual stress is not linearly proportional 
 to the bending moment, which varies along 
 the beam, as indicated by the BET.

•  Near the center of the beam, the values of 
 actual stresses are higher than those  
 predicted by the BET. 
•  The distribution of the actual stresses shows  
 no discontinuity of slope at the center of  
 beam as shown by the BET.
•  The values of actual stresses do not goes  
 to zero as those predicted by the BET; their  
 sign is changed near the reactive supports.  
 This phenomenon is due to a high radial  
 compression produced by the reactive  
 supports. 

 With the above conclusions, the BET is,  
therefore, inadequate to give information regarding 
localized stresses near the active points and  
supports; nevertheless, the stress field far away 
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2. Stresses in Rectangular Beams
 Insofar as the literature are reviewed, three  
explicit systems of 2D stress fields of the rec- 
tangular beams based on an analytic derivation are 
available: the BET, the WST, and the DGT. The 
BET was derived from the principle of Mechanics 
or Strength of Materials with several essential 
assumptions whereas the last two theories were 
derived on the basis of Theory of Elasticity with 
rigorous knowledge of mathematics. An in-depth 
consideration of these theories is addressed as  
followings.  

 2.1 Bernoulli-Euler theory
  Consider the beam carrying the concen-
trated force at its center (Fig. 1). Based on the BET, 
the expressions of stresses in terms of the concen-
trated force P, the thickness t, and the midspan l are 
as follow [1];

                                               
 It should be noted that the point of origin of the 
x-y axis is at the extreme fiber and at the midspan of 
the beam. Considering the expression of the shear 
stress τ'x y, we found that it changes its sign when the 
points in question are on the left side of the x-axis.  
Additionally, no matter where those points are either 
above or below the distance c, the sign of the shear 
stress τ'x y belonging to the points is unaltered as long 
as those points are on the same side with respect to 
the x-axis. 

 2.2 Wilson-Stokes theory
  Owing to the concentrated force P acting 

enough from the supports conforms well to the 
theory. This phenomenon agrees well with the  
St Venant’s principle in that the effect of external 
force is confined to regions near the points of  
application of such external force [4]. By the 
above explanation, we can conclude that the values 
of stresses predicted by the BET become more  
unreliable in accordance with a degree of how small 
the ratio l/c is.
 To investigate a stress field of the loaded beams 
and to see how it changes with the ratio l/c, this 
paper presents a simulation of the two-dimensional 
(2D) stress field, often called a fringe, of the  
rectangular beam carrying a concentrated force 
at its midspan based on the principle of digital  
photoelasticity. Reader can find the detail of the 
principle of digital photoelasticity in reference 
[5,6]. Intensity maps of all related stresses are also 
generated. The paper also provides a numerical 
comparison of stress results obtained from the 
BET with other two theories: Wilson-Stokes theory 
(WST) and Durant-Garwood theory (DGT), for 
several cross sections of the beam. 
 A generation code of stress fields and maps is 
implemented on Visual C++ .NET and can work 
simply together with or embedded in the program 
developed elsewhere [7]. The beam can be exploited 
as a standard photoelastic model in an analysis of 
stresses as it possesses more complicated stress 
field than that of a benchmark model-a circular disk 
model under diametral compression-which makes 
the beam more suitable for testing other newly 
developed techniques in the photoelastic analysis 
[8-10]. The desire to increase the capability of the 
program [7] in stress analysis lies behind the focus 
of this paper, which is slanted toward high-end 
software for the experimental stress analysis.

(1)
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on the upper surface of the beam (Fig. 1), we can 
treat this plane-stress problem as a semi-finite plate 
subjected to a concentrated force. The expressions 
of localized stresses in terms of the concentrated 
force P, the thickness t, and the coordinates x and y 
are [2]
         

                                                               

  Combining Eqs. (1) and (2) yields

                                              
Equation (3) is the well-known WST. Note that the 
preceding explanation about the change of sign of  
τ'x y in section 2.1 is also applicable to the shear stress 
τx y. Also, this theory is known to hold somewhat as 
the BET does.

  2.2.1  Stress along the section of symme-
try: σx x

  Considering now a cross section along the 
x-axis, we found that the normal stress σx x must 
be zero at the bottom surface (x = 2c) because there 
is no applied force acting there. The first expression 

in Eq. (3) always gives the compressive stress σx  x 
but its values have to be vanished. If we assume that 
the correction is of a linear function of x, then, [2]
                                                                        

Then, by tedious manipulation with                               , 
we have                         and

                                                                   
  2.2.2 Stress along the section of symme-
try: σy y

  Referring again the cross section along the 
x-axis, the normal stress σy y can be modified such 
that the effect of localized stress is included in it. 
Considering the second expression of Eq. (3), it is 
found that [2]

  Notice that the first and second expressions 
on the right side of Eq. (6) accounts for the bending 
stress and average stress due to the concentrated 
force, respectively.

 2.3 Durant-Garwood theory
  Consider Fig. 2 showing the rectangular 
beam carrying the concentrated force at its midspan. 
Based on the DGT, let [1] 

(2)

(3)

(5)

(4)

(6)

(7)

(8)

                

and
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(9)

and 
                              

(11)

(10)

where p and q are the pressure on specific areas, lp 
and lq are the lengths of such areas, respectively, and 
lb is the half length of the load-free portion along the 

lower edge (Fig. 2). Note that the thickness t has 
already included in the pressure p and q (see Table 1).

- 
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Note

pp. 306-312.

This predefined value is equal to
This value is taken from Maneschy, C.E., Miyano, Y., Shimbo, M., and Woo, T.C., 1986,  “Residual Stress

Analysis of an Epoxy Plate Subjected to Rapid Cooling on Both Surfaces”, Experimental Mechanics, Vol. 26,

Table 1 Values of parameters related to the loading condition used in the DGT

  With the above quantities, the stress components are  
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the BET and the WST do not account for the beams’ 
materials. The term       is a compressive stress  
due to the weight of the beam. 

where , ,    is a  
desity of materials used to fabricate the beam,  
and g is the gravitational acceleration. Note that 

(13)

(12)

(14)

Fig. 2 Geometrical shape and loading condition of the beam used in the Durant-Garwood theory 

(after Sadd and Hendry [1]).

3. Computer-based Generation of Stress  
 Fringes and Maps
 Before we make any further consideration, an  
explanation about the difference between the fringe 
and map must be made. In digital photoelasticity, 
the fringe refers to an image representing the field 
of wavy-colored bands by which the color and  
shape of the field change due to the values of the 
parameters in the governing intensity equations 
[5]. These parameters, in turn, directly pertain to 
the physical quantities needed to be interpreted. On 
the other hand, the map is an image representing the 
field of a non-wavy-colored band generated from 
the values of one interested parameter such as σx x, 
σy  y, τx  y, and  so on. 

 3.1 Stress Fringes and Maps
  In this study, several fringes as well as maps 
of relevant parameters involving in the photoelastic 
analysis are considered. They are as follows.

  3.1.1 Maps of individual stress
  Several sets of stress components associated 
with their theories are available in section 2, i.e., σx x, 
σy y, and τx y, each of which can be plotted individu-
ally. Further, the individual principal stress, σ1 and 
σ2, maximum shear stress, τmax, and von-Mises 
stress, σvonMises, can also be computed from those 
stress components using the following well-known 
equations.
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  The sum of principal stresses satisfies the  
well-known Laplace’s equation,                    . 
This equation can be solved using the standard 
numerical method of finite difference but solving 
the Laplace’s equation is beyond the scope of the 
present work.
  For the wrapped isopachics map, it can be 
retrieved with the simple operation as shown in Eq. 
(16); that is,
                                                 

where Nisochroma,i represents the wrapped values of 
the isopachics and the superscript text conveys the 
same meaning as in Eq. (16).

  3.1.4 Isochromatic, isoclinic, and photo-
elastic fringes
  Based on the plane polariscope, the pho-
toelastic fringe contains both isochromatic and 
isoclinic fringes. To plot the isochromatic fringe, it 
is just that we cancel out the isoclinic term in the 
governing intensity equation. It should be noted 
that, in practice, we cannot obtain the isochromatic 
fringe by just only considering the isochromatic 
term since the isochromatic and isoclinic fringes 
are combined by nature except that we exploit the 
circular polariscope.
  We can retrieve the map of isoclinics using 
the well-known following equation.

  3.1.2 Maps of total isochromatic fringe 
order and wrapped isochromatics
  The isochromatics (fringe order), Nisochro-

matic, can be obtained using the equation below for 
each particular wavelength i; that is (see Eq.(13)),

                                      
where fσ ,i is the so-called material fringe values 
and determined by a calibration method for such 
particular wavelength. If a color image is of  
interest, i represents each color plane in ordinary 
color images, i.e. red (R), green (G), and blue (B). 
Since the spectrum of the visible or white light  
covers a wide range of wavelength, the exact values 
of R, G, and B wavelengths are indeterminate.  
However, the closet values of representing the 
white light are given elsewhere in many standard 
textbooks of digital image processing (DIP). 
  The wrapped isochromatics map is available 
with the simple operation according to the following 
relation.
                                          

where Nisochroma,i represents the wrapped values of 
the isochromatics as indicated by the superscript 
text ‘w’ and the function INT[ ] gives a nearest 
integer of any real number .

  3.1.3 Map of total isopachic fringe order 
and wrapped isopachics
  We can generate the map of isopachic fringe 
order, Nisopachic, by the same way as that of the 
isochromatic fringe order (see Eq. 1.5 of the total  
isochromatic fringe order); that is,

(17)or                                  

(18)

(16)

(15)

(19)or                                        
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  Equation (19) enables two values of ϕ, each 
of which corresponds to the directions of the princi-
pal stresses σ1 and σ2. The way to correctly match 
those isoclinic values and the principal stresses 
is described elsewhere [12]. Plotting the isoclinic 
fringe is similar to plotting the isochromatic fringe 
but with the exclusion of the isochromatic term in 
the governing intensity equation. Note that the left 
expression in Eq. (19) is applicable to the DGT 
whereas the right one is for the first two theories. 
  The procedure for the generation of photo-
elastic fringes is mentioned elsewhere [11] but, for 
clarity, it is briefly addressed here as follows: (1) 
Determine the isochromatics and the isoclinics by 
use of Eqs. (15) and (19), respectively; and (2) Input 
the values computed in (1) in the governing inten-
sity equation [7] to plot the photoelastic fringes. 

  3.1.5 Isoclinic map
  With Eq. (19), we get the isoclinic values 
at every point (x, y) in the region of interest (ROI). 
These values are used to plot the map, directly,  
instead of using the governing intensity equation as 
in the plot of isoclinic fringe.

 3.2 Graphical plot of fringes and maps
  For data visualization, the values of those 
interested parameters are codified to the corres-
ponding images by the following equation.

                                      
where g (x, y) is a gray value of a pixel at the 
position (x, y). The function INT[ ] gives a nearest 
integer of any real number . The number of 255 
is a maximum value of digitization and υ, υmax, and 
υmin  are, respectively, the to-be-codified, maximum, 
and minimum values of parameters interested.

4. Conditions for Fringe Generation 
 For the generation of fringes and maps, the  
material stress fringe values for three RGB wave-
lengths already reported are used [8]: fσ ,R = 11.19,
fσ ,G = 10.01, and  fσ ,B = 7.99, N·mm-1·fringe-1. These 
values, however, can be obtained for any other 
wavelength using the standard calibration method 
[13]. Two ratios of l/c = 2.00 and l/c = 4.00 with 
l = 120.00 mm. are used and they were chosen in 
order that we can easily investigate the change of 
stress fields of the beams as addressed in ref. [1]. 
The magnitude of load P applied at the midspan is 
of 300.00 N. Table 1 lists values of those parameters 
pertaining to the DGT.

5. Program Implementation
 The generation code is implemented in Visual 
C++ .NET as a stand-alone module according to the 
Object-Oriented Programming (OOP) concept. It 
gives several types of fringes and maps according to 
information previously described, and is embedded 
in the program already written [7]. 
 Considering the DGT, we see that the stress 
components are expressed in the form of summa-
tion with an index m running from 1 to ∞. Since 
it is impossible for the computer to sum the stress 
values for such value of m, a predefined value must 
be used. The only condition used to determine the 
m value is the smoothness of the fringe fields. It was 
empirically found that the m value of 100 provided 
sufficient smooth fringes and maps. The m value 
is of user-dependent; the higher the m value is, the 
slower the fringe or map is generated.  
 In Fig. 3 is shown the data-inputting dialog for 
several parameters needed for the simulation such 
as beam theories, beam properties, magnitude of 
applied load, fringe or map types, and so on. Table 
2 lists all available types of fringe and map. The 

(20)
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user can select one of the theories at a time. Other  
parameters can also be changed by inputting a 
proper value into the edit box nearby. The options  
of ‘-45 to +45 deg’ and ‘-90 to +90 deg’ are only 
available as soon as the user select ‘Isoclinic map’  
in the list (Fig. 3b). The difference of these two 
options is that the ‘-45 to +45 deg’ option pro-
vides the directions of the principal stress between 
-45° to +45° as theoretically computed using Eq. 
(19) whereas the ‘-90 to +90 deg’ option give the 
physical range that is unobtainable with Eq. (19) 
but with the phase unwrapping process. Detail 

about this difference has been described elsewhere 
[12]. Moreover, the ‘Summation’ field is activated 
once the ‘Durant-Garwood’ option is checked. The 
‘Max fringe’ field is only turned on when the ‘Total 
isochromatic fringe order map’ in the list is selected. 
The ‘Default’ button brings back every change 
made by the user to the original setting (Fig. 3a). It 
should be noted that the ‘Angle’ field is the isoclinic 
value supplied by the user to be used later in the plot 
of ‘Photoelastic fringe’ and ‘Isoclinic fringe’ as it is 
needed in the governing intensity equation.  

a b 

Fig. 3 Data-inputting dialog with several parameters required for the fringe and map simulation: 

(a) interface once opened and (b) interface showing several types of fringe and map.
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6. Results and Discussion
 Fig. 4, 5, and 6 respectively show sets of  
photoelastic fringes, isochromatics fringes, and 
isoclinic maps generated using those theories with 
different ratios of l/c. In Fig. 6 is shown both the 
wrapped (-45° to +45°) and unwrapped (-90° to 
+90°) isoclinic values.
 One sees that the simulated photoelastic fringes 
based on the use of the BET show considerable 
difference from those fringes obtained from the 
other two theories. The effect of the concentrated 
force (a high fringe density) at the upper edge of 
the beam is obvious in Figs. 4b and 4c, and Figs. 
5b and 5c with small difference at the fringe loops 
(colored ellipses near the load application point) 
whereas such effect does not exist in Figs. 4a and 
5a. Further consideration of Figs. 4a and 5a reveals 
that the fringes are horizontally symmetric. It is 
seen in Fig. 5 that the stress level at the lower edge 
(region) computed from the BET and the WST is 

higher than that computed from the DGT for both l/c 
ratios. This difference is clear in that the brightness  
of color of such region in Fig. 5c is less than that in 
Fig. 5b. Considering Fig. 5 (left side) again reveals 
that the simulated fringes obtained from the DGT 
provides a realistic perspective in having the proper 
compressive-force path; that is, the applied load  
is transferred to the reactive supports along the 
shortest path [13]. This force path is clearly seen 
in Fig. 5c as the regions of high stress value that 
connect the load application point and the reactive 
points and it can help the design of the reinforced 
concrete (RC) deep beam based on the compressive 
strut and tension tie model [4,14]. Note that the ten-
sion ties can be applied along both the lower edge 
and the direction perpendicular to the compressive-
force path to prevent a crack in concrete.
 Fig. 7 displays sets of maps of stress compo-
nents, σxx, σxy, and τxy generated using those three 
theories with the ratio l/c = 4.00. Note that those 

Table 2 Stress fields with their available fringes and maps

 - 
 - 
 - 

- 
- 
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Fig. 4 Photoelastic fringes simulated with the ratios l/c = 2.00 (left) and l/c = 4.00 (right), and ϕ = 45° exploiting 

(a) the Bernoulli-Euler Theory, (b) the Wilson-Stokes theory, and (c) the Durant-Garwood theory.
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Fig. 5 Isochromatic fringes simulated with the ratios l/c = 2.00 (left) and l/c = 4.00 (right) exploiting 

(a) the Bernoulli-Euler Theory, (b) the Wilson-Stokes theory, and (c) the Durant-Garwood theory.
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Fig. 6 Isoclinic fringes simulated with the ratios l/c = 2.00 (left) and l/c = 4.00 (right) exploiting 

(a) the Bernoulli-Euler Theory, (b) the Wilson-Stokes theory, and (c) the Durant-Garwood theory. In each theory, 

the upper and lower maps refer to the isoclinic values in the ranges -45° to +45° and -90° to +90°, respectively.
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maps generated with the ratio of l/c = 2.00 are 
not shown here owing to the similarity of fringe  
patterns. Further, the fringe intensity of the same 
stress component is slightly different due to the use 
of Eq. (20) with different values of υmax and υmin 
except for the shear stress τx y. For the normal stress 

σx y, we can see the effect of the concentrated force 
in the maps generated using the WST and the DGT 
(Figs. 7b and 7c). Although the maps of the shear 
stress τx y are different, their sign is the same; this can 
be seen by considering the white and black colors 
near the application point and the reactive supports.

Fig. 7 Maps of σx x, σy y, and τx y generated with the ratio l/c = 4.00 exploiting (a) the Bernoulli-Euler Theory, (b) the 

Wilson-Stokes theory, and (c) the Durant-Garwood theory. Read horizontally and vertically.
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Fig. 8 Maps of τmax, σvonMises, Nisochromatic, Nisochromatic, Nisopachic, and Nisopachic generated with the ratio l/c = 4.00 

exploiting (a) the Bernoulli-Euler Theory, (b) the Wilson-Stokes theory, and (c) the Durant-Garwood theory. 

Read horizontally and vertically.
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 In Fig. 8 are shown sets of maps of τmax, 
σvonMises, Nisochroma, Nisochroma, Nisopachic, and Nisopachic 
generated using those three theories with the ratio 
l/c = 4. It is also noted that those maps generated 
with the ratio of l/c = 2.00 are not shown here owing
to the similarity of fringe patterns as mentioned  
in previous paragraph. One see that the maps of 
τmax and σvonMises (each top row) are individually 
almost the same. These maps are important in the 
failure theories: Maximum Shear Stress Theory 
(MSST) and Distortion Energy Theory (DET) (or 
Octahedral Shear Stress Theory). It is well known 
that the MSST is more conservative than the DET 
[15]. This is consistent with the design principle in 
that the bigger the size of a designed member, the 
better the resistance of that member to the failure. 
In other words, the member size designed using the 
MSST is always bigger than that designed based 
on the DET. This principle is true with the cost of a 
design cost. The conservative sense is clearly seen 
in that the map of τmax looks always brighter than 
the map of σvonMises for the same magnitude of the 
applied concentrated force.
 The other three sets of four images show sequen-
tially the maps of wrapped and unwrapped isochro-
matics, and wrapped and unwrapped isopachics. 
The maps of wrapped and unwrapped isochromatics 
simulated using the WST and the DGT look similar; 
however, the wrapped one that generated from the 
BET shows no effect of concentrated force. The  
effect of concentrated force appears both at the load 
application point and at the reactive supports in 
the maps obtained from the DGT which give more 

reality than the first two theories. The foregoing  
description is also applicable for the maps of 
wrapped and unwrapped isopachics.
 It is of practical interest to compare the bending 
 stresses obtained from those theories. In Fig. 9 
are shown curves of σyy (σxx for the DET) where 
the horizontal axis shows the stress value whereas 
the vertical axis show the points of interest starting 
from the top edge down to the lower edge of the 
beam along the x-axis (see also Fig. 1). Consider the 
curves of bending stress for the ratio of l/c = 2.00 
(Fig. 9a). The stress curves of the BET and WST 
show linear distribution with a discrepancy near 
the load application point in that the WST provides 
much higher compressive normal stress. This linear 
distribution also occurs for the case of the Modified 
WST and DGT. We can also see that the WST  
and DGT show a similar trend toward greater 
compressive normal stress but the DGT provides 
a smooth curve near the load application point.  
Information just mentioned is also true for curves 
shown in Figs. 9b, 9c, and 9d (l/c = 3.00, l/c = 4.00, 
and l/c = 5.00, respectively). However, the stress 
curves of the DGT shows a nonlinear trend and 
considerable deviations from other theories with 
increasing the ratio of l/c. Also, the effect of the 
concentrated force causes a downward movement 
of a sharp-curved portion near the load application 
point. It is seen that the stress curves of the Modified 
WST and DGT agree well for every ratio of l/c in 
Fig. 9. Note that the Modified WST is available only 
along the x-axis.
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Fig. 9 Curves of bending stress σy y (σx x for the Durant-Garwood theory) obtained with the ratios of (a) l/c = 2.00, 

(b) l/c = 3.00, (c) l/c = 4.00, and (d)  l/c = 5.00 along the x-axis under the load application point. Data from the 

Bernoulli-Euler Theory is represented by the green two-dot-dashed line, the Wilson-Stokes theory and its modified 

version (use of Eq. 6) by the black dotted line and blue dashed line, respectively, and the Durant-Garwood theory 

by the red solid line.



วารสารวิจัยและพัฒนา มจธ. ปีที่ 34 ฉบับที่ 2 เมษายน - มิถุนายน 2554 111

7. Conclusion
 Digitally photoelastic simulation of the stress 
and/or fringe field of the rectangular beam is 
proposed through the program module. Three  
general mathematical models of the beam theories 
are discussed. It has been shown that the close agree- 
ment of the stress curves indicates the accuracy of 
numerical results for the small ratio of l/c: l/c < 3. 
However, the considerable deviation of these  
numerical resultsappears when l/c > 4, especially 
the compressed part of the beam. We have seen 
that the numerical results predicted by the BET are  
always greater than those from the WST and the 
DGT, which is consistent to the conclusion of 
Frocht [2]; however, the only exception is at and 
near the load application point.  
 It seems that there is a disagreement between the 
conclusions mentioned by Frocht [2] and by Kuske 
and Robertson [3]. That is, Frocht states that the 
BET is always safe or conservative whereas Kuske 
and Robertson observe that near the center of the 
beam, the values of actual stresses are higher than 
those predicted by the BET (see third paragraph of 
section 1). This disagreement is due to the fact that 
the BET requires the external force to be distributed 
parabolically over the cross section as the internal 
shear force [3]. The way to demonstrate such para-
bolic distribution is to make the beam having small 
transverse wings with reasonable width at the load 
application point and the reactive supports, and to 
have the external load applying at both ends of the 
central wing. With information just mentioned, the 
validity of the BET, strongly depends on the loading 
condition and the shape of beam. 
 To make the program module more practicable 
in studying the beam problem, the following aspects 
should be addressed: (1) in Table 1, the Load-length 
factor, LLF, is judiciously predefined for the DGT 

and it causes lq = 1.5 which is only equal to 1.25% 
of the half span l. So, increasing the length lq 
would be beneficial for the study of the stress and/
or fringe field for the condition of distributed load 
acting on the beam, and (2) it is only that the DGT 
accounts for the stress due to the weight of beam; 
therefore, the simulation of stress and/or fringe field 
with various values of material density would be of 
interest. Attention must be paid, however, when we 
use different materials because the parameter fσ is 
dependent of materials and the wavelength used in 
the calibration.
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