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Surface stress and non-local elasticity effects on the

free vibration behavior of nanobeams
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Abstract

This paper presents the effects of surface stress and non-local elasticity on the free vibration of
nanobeams with various boundary conditions. Analytical solutions for natural frequencies and correspond-
ing mode shapes of the nanobeams are derived and compared numerically by using the finite element
method. Identical results between the two solution methods are obtained. The obtained results indicate that
the surface stress and non-local elasticity affect directly the free vibration behavior of the nanobeams. The
effect of surface stress is to increase the stiffness of the nanobeams. Therefore, the natural frequencies of
the nanobeams for all boundary conditions increase in comparison with that of the classical Euler beam.
Moreover, the surface stress affects significantly only for the lower modes of vibration. In the case of non-
local elasticity effect, it reduces the natural frequencies of the nanobeams, especially for the higher modes
of vibration. For the nanobeams subjecting to both effects, the results show that the natural frequencies
are in between one of the nanobeams with surface stress and the one with non-local elasticity. This gives
a practical implication that not only the surface stress but also non-local elasticity affects directly on the
vibration behavior of the nanobeams. However, the surface stress affects only the lower modes of vibration
and therefore the results of the nanobeams subjecting to both effects are converted to those of the nanobeams
where only non-local elasticity is considered for the mode number with higher than fourth mode. In case
of vibration mode shapes, the surface stress and non-local elasticity affect the nanobeams of all boundary

conditions except the pinned-pinned and sliding-pinned nanobeams.
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1. Introduction

Nanoscale structures such as wires, rod and
beams have a wide range of applications in physics,
engineering, and several other fields [1-6]. In
engineering applications, nanobeams are commonly
used in advanced technological devices such as
sensors, actuators, transistors, and resonators in
nanoelectromechanical sys-tems (NEMSs), respec-
tively [7,8]. Since the mechanical properties of
nanobeams are totally different from classical and
macroscopic counterparts, therefore it is necessary
to exactly characterize the mechanical properties
of nanobeams for these applications. Nanobeams
are size-independent physical properties and me-
chanical properties while their bending, buckling,
and vibration behaviors are size-dependent, this is
due to their large ratio of surface area to volume
[9,10].

For the solution of nanobeams obtained in
literatures, it can be seen that most of the solutions
of nanobeams were solved based on the consid-
eration of surface stress, residual surface tension,
as well as the surface elasticity. The surface stress
theory was initiated by Gurtin and Murdoch [11]
and was included by many researchers in order to
investigate the static and dynamic behaviors of
micro and nanostructures. For examples, Wang
and Feng [3] presented the surface stress effect
on the natural frequencies of simply-supported
micro-beams. The surface stress effect was also
considered incorporated with nonlinear static and
dynamic behaviors of nanobeams [4]. In addition,
Liu and Rajapzikse [5] studied the surface stress
effect on the bending, buckling, and the vibration
of nanobeams and double nanobeams systems [6].

In case of non-local elasticity theory, the
obtained literatures indicated that the non-local

elasticity theory was initially proposed in 1983 by

Eringen [12,13]. Later on, this theory was applied
to the classical nanostructure of carbon nanotubes
(CNTs). Based on this theory, the size scale is used
to adjust the properties of elastic body continuum
and it is assumed that the stress at a reference point
depends on the strain at the same point and also
at all other points in the continuum. In this way,
the internal size scale could be considered in the
constitutive equations, especially, the size scale of
material parameters.

The applications of non-local continuum theory
on the nanotechnology works were initially
addressed by Peddieson et al. [14]. This work used
the simplified non-local model which presented
by Eringen [12] to solve the static displacement of
nanostructures. In literatures, there were also found
that applications of non-local elasticity for nano-
structure analysis received much attention by many
researchers [15-21]. Reddy and Pang [15] presented
the analytical solutions of bending, vibration, and
buckling of CNTs. Non-local elasticity for free
vibration single-walled CNTs are also presented by
author’s previous work [16]. This work presented
the classical solutions and then compared with that
of numerical solutions provided by finite element
models. Lu et al. [17] studied the dynamic proper-
ties of flexural beams using a non-local elasticity
model. Frequency equations and model shape
functions of nanobeams with general boundary
conditions were derived based on a non-local
Euler-beam model. Pandikar and Pradhan [18]
analyzed the bending, buckling, and the vibration
of nanobeams and nanoplates by using the finite
element solution. Moreover, a few researchers
[19,20] were also applied the non-local elasticity
with the free vibration behaviors of nanobeams
using finite element method. Meanwhile, Ghannad-

pour et al. [21] presented bending, buckling, and the
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vibration problems of non-local Euler beam using
Ritz method.

Focusing on the problem of nanobeams including
the combined effects of surface stress and non-
local elasticity, Mahmoud et. al. [22] presented the
static displacement of simply support nanobeams
by using finite element analysis while author’s
previous work [23] determined analytically the
static displacement and buckling of nanowires
with various boundary conditions and verified
numerically using finite element method. Few
studies included the surface stress effect on the
frequency analysis of nanostructures using non-
local elasticity beam theory were also found in
works of Lee and Chang [24,25]. The first published
paper presented the natural frequency of simply
supported nanotubes using the non-local Timosh-
enko beam theory while the second work presented
the natural frequency of a non-uniform cantilever
nanobeam using the Raleigh-Ritz approximation
solution method. In addition, the nonlinear frequency
analysis of nonuniform cross section nanobeams
was also investigated by Malekzadeh and Shojaee
[26] for both Timoshenko and Euler-Bernoulli beam
theories.

There can be seen from literatures that only a
few studies have focused on vibration behaviors of
nanostructures including the combined effects of
surface stress and non-local elasticity as well as the
combined effects on the vibration mode shapes of
nanostructures have not been found yet. Therefore,
the main purpose of this work is to determine
analytically the natural frequencies and correspond-
ing mode shapes of nanobeams with boundary
conditions of pinned-pinned, clamped-clamped,
clamped-free, clamped-pinned, clamped-sliding,
and sliding-pinned, respecttively, and then verified

numerically using the finite element method. The

combined effects of surface stress and non-local
elasticity on the natural frequencies, vibration mode
shapes, and boundary conditions are also discussed
and would differentiate this work from other
published works [24,25]. The equation of motion of
nanobeams and the free vibration analysis results
obtained in this work can be used to predict the
vibration behaviors of nanobeams in NEMs

technology applications.

2. Problem Formulation
2.1 Surface stress model for nanobeams
The influence of surfaces can be expressed
as surface stress which is related to the surface
density. In the theory of surface elasticity [11] if
both the surface layer and the bulk of the material
are isotropic and linearly elastic, the one-dimen-

sional form of surface stress can be given by [1,2]
o' =t"+E’s (1)

where 7° is the residual surface tension,
is the surface elasticity determining by atomistic
simulations or the experimental measurements
[9,10], and ¢ is the longitudinal strain of the surface
resulting from an applied force to the nanobeams.

The assumption that the thickness of the
surface layer ¢ is much smaller than the beam
thickness is applied. The effect of surface elasticity
on the vibration of nanobeams can be accounted
by replacing the flexural rigidity (£7) for the bulk
material with that of the effective flexural rigidity
(ED* [1,2] and can be presented as

bh’ bh> I

E—+ E*(——+—) (rectangular
T ( 5 6)( gular)

4 3
7D L 7D
64

(ED)*=
E

(circular) — (2)
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where b and /4 are the width and depth of
rectangular cross section while D is the diameter of

circular cross section as presented in Fig. 1.

—

y
)

Fig. 1 A rectangular and circular cross section of

nanobeams with a surface layer.

According to the generalized Young-Laplace
equation [1,2], the distributed transverse force ¢,
resulting from the surface stress along nanobeams
in longitudinal direction and depending on the

current surface curvature can be obtained as
q,=Hxk 3)

where x is the surface curvature approximated
by d*v/dx? for small deformation of nanobeams
in which v is the transverse displacement of nano-
beams. The parameter H is a constant determined by
the residual surface tension depending on the shape
of cross section. For a rectangular cross section with
the width of b and a circular cross section with the

diameter of D, the parameter H is given by
27°b

H =
27°D

2.2 Surface stress including non-local elastici-

(rectangular)

(circular) )]

ty model for nanobeams
According to the theory of non-local elastici-
ty, stress at a reference point depends on the strain

at the same point and also at all other points in the

continuum. The non-local bending moment consti-
tutive relations for one-dimensional of nanowires
including the effects of non-local elasticity [12] and
surface stress can be expressed as
2 2

M:—(EI)*ZT‘:+;1%TA2/[ Q)

where 1 = (e,a)* is the parameter of non-
local scale revealing the effect of small-scale on
the response of nanostructures while (EI)* is the
effective flexural rigidity including surface stress
mentioned above. Besides, Yang and Lim [27]
estimated the values of x as ¢ < 0.04 by matching
the analytical non-local parameter of Timoshenko
nanobeams model and molecular dynamic simula-
tion solutions. The value of y is the dimensionless
non-local parameter which x = u/L’ where L is the
total length of nanobeams.

From the equilibrium of forces and mo-
ments on the nanobeams segment as shown in Fig.
2, the equations of shear force Q and the bending

moment M can be written as

B_Q o*v o*v

—oaY g 6
x P e ©)
oM
—=0 @)
Oox

where p is the mass density and A is the
cross section area of the nanobeams, respectively.
Substituting of Eq. (6) into Eq. (7), the following
equation can be obtained

O*M 0% v

_ o0V _g v 8
. Pl ®)

Substituting Eq. (8) into Eq. (5), one obtains

o’ o’y o’y
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By setting Eq. (8) equal to the second
derivative of Eq. (9), the equation of motion for the
nanobeams with consideration of both surface stress
and non-local elasticity can be expressed as
o'y o’y o'y
 HY Y oA
ot et e

o*v
pal¥ o (10)
» or’

[(ED*+uH)]

In case of the surface stress and the non-local
elasticity effects are completely neglected which
E, t° H and are p all set to zero, Eq. (10) can

be reduced to the classical Euler beam equation [28].

a0
O+ axdx

Fig. 2 Free body of an infinitesimal segment of

nanobeams.

3. Analytical solution for free vibration
behaviors of nanobeams

For determining the natural frequencies and
corresponding mode shapes, the solution of partial
differential equation of motion, Eq. (10), can be
obtained by assuming the displacement of the

nanobeams as

Vv(x,t) =V (x)e” i =~-1 an

where w is the eigenvalue and V(x) is the
eigenfuction, respectively. Substituting Eq. (11)
into Eq. (10), the governing equation for transverse
free vibration of nanobeams considering surface

stress and non-local elasticity can be obtained as

d'v N4
[(E])*+,uH)] e —(H—,upAa) ) e
—p A’V =0 (12)

The bending stiffness of nanobeams can
be defined by using the parameter o where o =
[(ED* + (uH)]. For convenience, the following

dimensionless parameters are introduced:

_(H—upAe®)L
o

(13a-13d)

E=x/L, u=ull’n

Ao’ L'
B= pAo L
o

and

Therefore, the governing equations for trans-
verse free vibration of nanobeams can be simply

expressed in dimensionless form as

dav av
ag a0 9

Finally, the solution of Eq. (14) can be expressed

as

V(&)=C,sinhA&+C, cosh A&+ C,sinyé
+C,cos g (15)

where 2% =27+ + 447,

1
y= 5(—77 ++4n° +4p°) and the unknown con-
stants C,, C, ,C, and C, for each case of the support

condition can be determined below.
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3.1 Pinned-Pinned nanobeams

The boundary conditions for pinned-pinned
nanobeams are given as V(0) = V(1) =0 and M(0) =
M(1) = 0. By substituting the general solution of
nanobeams, Eq. (15), into the boundary conditions,
the characteristic equation can be obtained as
sin()=0 (16)

Then, the unknown constants for pinned-

pinned nanobeams are given as

C, =0, (17a)
C,=0, (17b)
C, =0, (17¢)
and

C, =0 (17d)

Next, the eigenvalue of natural frequencies

is also obtained in form of

o = a(nr /L) +H(nr /LY
pA(+u(nz))

n=123,.. (18)
Finally, the corresponding modal shape
function is
V(&) =sin(yS) 19)
3.2 Clamped-Clamped nanobeams
The boundary conditions of clamped-
clamped nanobeams are giv en as V(0) = V'(0) = 0
and 7(1) = V(1) = 0 which are the zero displace-
ment and rotation at beam’s support. Then, the
characteristic equation for determining the natural
frequencies can be obtained as

[*+ B sinh A sin y + 2y + f?) 20)

Then, the unknown constants for clamped-

clamped nanobeams are given as

C =1, (21a)
Asiny —ysinh A
Y (21b)
y(cosh A —cosy)
A
c,=—=, 210)
V4
and

Asiny —ysinh 1
C, - siny—ysinhA 21d)
y(cosh A —cosy)

Finally, the modal shape function of

clamped-clamped nanobeams is

Asiny —ysinh 4

V(&) =sinh(A&) + cosh(A¢)

y(cosh A —cosy)

Asiny —ysinh A

—fsin(yﬁ)— cos(7€)

y(cosh A —cosy)

(22)
3.3 Clamped-Free nanobeams

The boundary conditions for clamped-free
nanobeams are given as v(0) = v (0)=0and M(1)=
0(1) = 0 in which they are corresponding to the
displacement and rotation at clamp end to be zero
while the moment and shear at free end to be
vanished, respectively. Next, the characteristic
equation for determining the natural frequencies is

obtained as follow:

B+ Bnsinh Asiny +(2n° + §7)
coshAcosy =0 23)
Then, the unknown constants for clamped-

free nanobeams can be expressed as
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C =1, (24a)
c __ A’sinh A+ Aysiny ”
> A*coshA+y*cosy’ (24b)
C=-=, (240)
I
and
A*sinh A+ Aysiny
C,=— > : (24d)
A coshA+y cosy

Finally, the modal shape function of

clamped-free nanobeams is given as follow:

A*sinh A+ Aysiny
A cosh A+ % cosy

cos(75)

V(&) =sinh(A&) - cosh(A¢)

*sinh A+ Aysiny

A A
——sin()$) +— >
y A“coshA+y cosy

(25)
3.4 Clamped-Pinned nanobeams

The boundary conditions for clamp-pinned
nanobeams are given as V(0) = V'(0) = V(1) and
M(1) = 0. Next, the characteristic equation for

determining the natural frequencies is obtained as
AcoshAsiny —ysinh Acosy=0 (26)
Then, the unknown constants for clamped-

pinned nanobeams are obtained as

C =0, (27a)
C,=—tanh 4, (27b)
C,=", 27¢)
and
A
= ; tanh y. (27d)

Finally, the modal shape function of

clamped-free nanobeams is given as follow:
V(&) =sinh(A&) —tanh A cosh(A&)

—isin(}/f) +itanhﬂ,COS(7§) (28)
14 Y

3.5 Clamped-Sliding nanobeams
The boundary conditions for clamp-sliding
nanobeams are given as V(0)=V'(0)=0and V(1) =
O(1) = 0. Next, the characteristic equation for

determining the natural frequencies is obtained as
ycoshAsiny+AsinhAcosy=0 (29)

Then, the unknown constants for clamped-

sliding nanobeams are obtained as

C =1, (30a)
__ A(cosh A —cosy)
G2= Asinh A+ ysiny’ (30D)
A
= (30c¢)
I
and
A(cosh A -
= (cos Cosy) 30d)

~ AsinhA+ysiny’

Finally, the modal shape function of

clamped-free nanobeams can be expressed as

A(cosh A —cosy)

V(&) =sinh(A&) - h(A4
(¢) =sinh(4) Asinh A+ ysiny cosh(4e)
A . A(cosh A —cosy)
-= t—_
14 sin(z6) Asinh A+ ysiny cos(ze) @3

3.6 Sliding-Pinned nanobeams
The boundary conditions for sliding-pinned
nanobeams are givenas V'(0)=0(0)=0and M(1)=0.
Next, the characteristic equation for determining

the natural frequencies is obtain as



NI TITBURLWAUY 95 TN 87 aifufl 4 ganan - Sunay 2557 489

cos(¥)=0 (32)

Then, the unknown constants for sliding-

pinned nanobeams are obtained as

C,=0, (33a)
C,=0, (33b)
C,=0, (33¢c)
and

C,=1. (33d)

Finally, the modal shape function of
sliding-pinned nanobeams is

V(&) = cos(y5) (34)

To check the validity of natural frequen-

cies and vibration mode shapes of nanobeams, the

Galerkin finite element method is used to verify

these results. A brief detail of the method is given

in the next section.

4. Finite element solution for vibration
of nanobeams

By applying the Galerkin’s weighted residual
method to Eq. (12), the weighted residual equation

can be written as

d

* 4V
[(ED* )]

V(x)dx =0

2
~(H - upAer’) ‘2;2/

—pAw’V

O C—

(335)

where L is the total length of nanobeams and
v(x) is the weight functions. Integrating by parts of
Eq. (35) twice, one yields the following equation:

d*v d*v

*
[(ED)*+uH] T

dx

S Sy 1~

+(H - ,upAa)z)d—Vﬂ— pAa)zV;
dx dx

L

+ Mﬂ—Q;J =0 (36)
dx
0
dv 5
where M =—[(El)*+uH | e —upAw’V and
X
a’v av av
=—[(ED)*+uH — up A ——+ H——
O=—[(ED)*+u ]dx3 ppdo’ ——+H—

are the bending moment and shear force terms,

respectively.

For two-node finite element with two nodal
degrees of freedom per node, the transverse
displacement is interpolated in terms of shape
functions and degrees of freedom as

v(x) = [N] {d} 37

Vo,
2

h dj=|V, —
Were{}[1 o o

T
} is the nodal

degree of freedom and N, (x) is the cubic

polynomial shape functions which can be given as

N o132 (38a)

1 12 13
2 3

N, —x_z%w;_, (38b)

3 2d (380)
I? r

and

JEEANE (38d)
/ [



490 MNINTITBURLWAUY 95, TN 37 2ifufl 4 ganan - Sunau 2557

where / is the length of nanobeams-element.
Substitution of Eq. (37) into Eq. (36), one yields

[(El)*+yH][N][ ]
+H[N] [N]
~0'(pA[N [N ]

A NT[N)

[SY S

{ddx=0  (39)

The element stiffness matrix is then obtained as

ED*+uH][N'] [N]

= L dx (402)
o +H[N] [N]
, Or
12 6 -12 6l
[k]_[(EI)*+uH] 6/ 4> -6 2
e P -12 -6/ 12 -6l

6l 2I° -6 4
36 3 -36 3l
+i 3 4 3 -r
30/|-36 =31 36 -3l
3 -1 =31 4r (40b)
It can be seen from Eq. (40b) that the modified
stiffness presents classical stiffness matrix includ-
ing the both effects of surface stress and non-local

elasticity. Then, the element mass matrix is given
by

, or

[ 156 221 54 —13]
[m]_pAl 220 4% 131 -3¢
420 54 131 156 -221
| 130 =317 221 4r

[ 36 31 -36 3l
ez 31 4 31 -I°
TR0 |36 31 36 -3
3 -7 31 4P

(41b)

Finally, the element stiffness matrices, mass ma-
trices, and nodal degree of freedom are assembled
to obtain the global equilibrium equation of motion
as

(K] - ? [M]) {D} ={0} (42)

‘Nels

where [K]= Y [k, [M]= Z[m ]

and{D} = Z {d},, are the global structural stiffness
i=1

matrix, global consistent mass matrix, global nodal
displacement, respectively. N, is the number of
elements in the structure. Then, Eq. (42) has the
form of the algebraic eigenvalue problem. For
non-trivial solution, the determinant of the

coefficient matrix is equal to zero.
|IK] - w? [M]] = 0 (43)

By expansion of Eq. (43), one yields a polyno-
mial of order n of characteristic equation. The n
roots of w/? are the eigenvalue which it is ordered
from lowest to highest mode of vibration for each

boundary condition.

0<&' <@} <.<w <. (44)
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5. Results and discussion

In this section, the results of natural frequencies
and corresponding mode shapes of nanobeams with
various boundary conditions are presented using the
nanobeams with the span length (L) of 1,000 nm
and the diameter (D) of 50 nm as the case study. The
material properties as used in the work of He and
Lilley [1,2] are performed. These material properties
are £ =76 GPa, E°=1.22 N/m, ©° = 0.89 N/m, and
p = 10.5x10° kg/m?, respectively. In case of non-
local parameter, the authors use the parameter
presented in the work of Yang and Lim [27] which
4=0.04.

The analytical results for natural frequencies of
nanobeams are verified with that of finite element
analysis results by using 20 elements discretized
along the beam’s span length. As presented in
Tables1-2, the analytical and numerical results for
all boundary conditions of nanobeams are identical
for the nanobeams with classical Euler beam theory,
nanobeams with non-local elasticity, nanobeams
with surface stress, and nanobeams with combined
effects of non-local elasticity and surface stress.
Moreover, the obtained results also demonstrate
high accuracy in comparison with those of previous

analysis results [2, 17].

Table 1 Analytical and numerical results of eigenvalue, ®(x10°) of pinned-pinned (P-P), clamped-clamped (C-C),

and clamped-free (C-F) nanowires

Classical Euler

Surface stress

Non-local elasticity ~ Surface and Non-

Boundary beam effect effect local effects
condition LT'[28] FEM® LT'[2] FEM® LT'[17] FEM’ LT FEM"
Mode 1  0.3319 0.3319 0.3912 0.3912 0.2810 0.2810 0.3489 0.3489
Mode 2  1.3276 1.3276 1.3919 1.3919 0.8267 0.8267 0.9249 0.9249
PP Mode 3  2.9872 2.9873 3.0545 3.0545 1.3999 1.3999 1.5324 1.5325
Mode 4  5.3106 53111 5.3811 5.3817 1.9633 1.9635 2.1322 2.1324
Mode 1 0.7524 0.7524 0.7877 0.7877 0.6151 0.6151 0.6878 0.6878
Mode 2  2.0740 2.0741 2.1240 2.1240 1.2249 1.2249 1.3431 1.3431
cC Mode 3  4.0660 4.0662 4.1233 4.1235 1.8336 1.8338 1.9922 1.9923
Mode 4  6.7212 6.7223 6.7846 6.7858 2.4083 2.4088 2.6065 2.6070
Mode 1 0.1182 0.1182 0.1801 0.1801 0.1085 0.1085 0.1728 0.1728
CF Mode2  0.7410 0.7410 0.8301 0.8301 0.4902 0.4902 0.5806 0.5806
Mode 3  2.0748 2.0749 2.1563 2.1563 1.0553 1.0553 1.1671 1.1671
Mode 4  4.0659 4.0660 4.1462 4.1464 1.6234 1.6235 1.7698 1.7698

LT* = Linear Beam Theory (Analytical solution)
FEM?® = Finite Element Method
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Table 2 Analytical and numerical results of eigenvalue,of clamped-pinned (C-P), clamped-sliding (C-S), and sliding-

pinned (S-P) nanowires

Classical Euler

Surface stress

Non-local elasticity Non-local and

Boun.d.ary beam effect effect Surface effects
condition LT*[28] FEM® LT FEM® LT FEM" LT FEM"
Mode1 05185 05185  0.5649  0.5649 04286 04286  0.4965  0.4965
Mode2 1.6803  1.6803 17366 1.7366  1.0202  1.0202 11271  1.1271
P Mode3 35058 35059 35677 35678 16105 16101 17554 17554
Mode4 59951 59960 6.0618  6.0626  2.1832  2.1836 23663  2.3667
Mode1 0.1881  0.1881 02205 02205 0.1775 0.1775 02195  0.2195
Mode2 1.0165 1.0165 1.0689  1.0689  0.7206  0.7206  0.8084  0.8084
5 Mode3 25101 25101 25693 25694 13178 13178 14436 14436
Mode4 4.6675 4.6679 47318 47321  1.8989  1.8991  2.0628  2.0629
Mode1 0.0083  0.0083 0.1325  0.1325  0.0079  0.0079  0.1301  0.1301
gp Mode2 07468 07468 08093 08093 05434 05435 06261  0.6261
Mode3 2.0744  2.0745  2.1402  2.1403  1.1140  1.1140 12290  1.2290
Mode4  4.0659  4.0662 4.1347 41349  1.6830 1.6831  1.8335  1.8336

LT*=Linear Beam Theory (Analytical solution)
FEMP = Finite Element Method

In this investigation, the variations of mode
shapes of nanobeams for all boundary conditions
are also presented. The variations of mode shapes
of pinned-pinned nanobeams are shown in Fig. 3. It
is interesting to note that the non-local elasticity and
surface stress have no effect on the vibration mode
shapes since the modal shape function, Eq. (19),
of pinned-pinned nanobeams is independent from
both effects. In other words, the non-local elasticity
and surface stress effects affect only on natural
frequencies in case of pinned-pinned nanobeams.

In Figs. 4-7, the variations of mode shapes of
clamped-clamped, clamped-free, clamped-pinned

and clamped-sliding nano-beams are presented.

It can be seen that surface stress and non-local
elasticity terms affects directly on the vibration
mode shapes of nanobeams. The surface stress
increases the vibration amplitudes. The influence
of this effect is also described by considering the
modified stiffness of Eq. (40), which the vibration
amplitude basically increases when the stiftness
matrix increases. Consequently, the non-local
elasticity decreases the vibration amplitudes of
nanobeams. This is due to the effect of non-local
elasticity term in the mass matrix of Eq. (41). When
both effects are combined, the similar results of
vibration mode shapes with that of the nanobeams

including only the non-local elasticity are obtained.
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This gives a practical implication that the surface

stress has no significantly effect on the vibration

amplitude.

The mode shapes of sliding-pinned nanobeams

is presented in Fig. 8 and also found that the results

of nanobeams including both effects of surface

stress and non-local elasticity is not different from

the Euler beam.

493

In the other words, the sliding-pinned nano-

beams gives similar vibration behavior as pinned-

pinned nanobeams. The boundary condition can be

satisfied by the following vibration of cosh ¥ = 0

or

¥ = (2n—1) /2 and the mode number is

independent on both non-local elasticity and

Surface stress effects.
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Fig. 3 Variations of mode shapes of pinned-pinned nanobeams
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Fig. 4 Variations of mode shapes of clamped-clamped nanobeams.
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Fig. 5 Variations of mode shapes of clamped-free nanobeams.
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Fig. 6 Variations of mode shapes of clamped-pinned nanobeams.
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Fig. 7 Variations of mode shapes of clamped-sliding nanobeams.
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Fig. 8 Variations of mode shapes of sliding-pinned nanobeams.

Finally, the variation of dimensionless natural
frequencies of nanobeams under various boundary
conditions are illustrated as presented in Fig.9. The
comparison between the nanobeams with surface
stress effect and Euler beam, the nanobeams with
non-local elasticity effect and Euler beam, and the
nanobeams with combined effects of surface stress
and non-local elasticity and Euler beam are also
shown and found that the surface stress results the
increment of natural frequencies but its influence
is reduced and then has no effect when the mode
number is higher than the fourth mode. The decre-
ment of natural frequencies of nanobeams with

accounting only surface stress obtained in this

work has a similar trend in comparison with the
work of Wang and Feng [3]. For the nanobeams
including non-local elasticity, there can be seen
that the natural frequencies of nanobeams for all
boundary conditions are decreased significantly
for all modes number. These obtained results give
the similar behaviors as presented in the previous
work [17]. Itis also observed that the effect of the
non-local elasticity increases for the higher modes
of vibration. When the surface stress is combined
with that of non-local elasticity, the obtained natural
frequencies are in between the one of nanobeams
with surface stress and the one with non-local

elasticity. For the higher modes of vibration, the
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natural frequencies are converted to the nanobeams
with non-local elasticity. The reasons are based

on the fact that the influence of surface stress is

negligible small for the modes number which is
higher than the fourth mode.

1.4 1.4
1.2 %A %x 1.24 D
\\!__; )
> >
5 : i S
S 10T -———X—————- EEE i it et o - v 2 1.0 o N o o \g v
o =3
2 2
el “—
= =
E 0.8 g 0.8
< <
S 2
2 2
= 064 = 064
2 2
E 044 E 044
a a
024 ¥ Surface stress/Euler Beam 024 ¥ Surface stress/Euler Beam
—m— Nonlocal elasticity/Euler Beam ' —m— Nonlocal elasticity/Euler Beam
—&— Surface stress and Nonlocal elasticity/Euler Beam —&— Surface stress and Nonlocal elasticity/Euler Beam
0.0 T T T T T T T T T T 0.0 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Mode number Mode number
(a) (d)
1.4 1.4
N N
124 N 1.24 D N
> =
8§ 1.04+----——- ———¥———v—%—¥ v —v—v § 1.04+----
= o
£ &
= ] = ]
E 0.8 E 0.8
< <
= [
g 0.6 g 0.6
E .07 E .07
.2 2
7 %
= =
o Q
E 044 £ 044
a a
0.24 —¥— Surface stress/Euler Beam 0.2 —¥— Surface stress/Euler Beam
—&— Nonlocal elasticity/Euler Beam —m— Nonlocal elasticity/Euler Beam
—&— Surface stress and Nonlocal elasticity/Euler Beam —&— Surface stress and Nonlocal elasticity/Euler Beam
0.0 T T T T T T T T T T 0.0 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Mode number Mode number
(b) (e)
1.6 1.8
N\
1.44 N 1.6
R R .
g 124 5 144
o =
= 3
o o -
E L0 -————=y === v £ 12
g 5
E 2 10+-——- —v—v¥ v
= 0.8 ]
2 @
=2 $ 0.8
= 2
2 0.6 &
5 £ 0.6
£ g
a 049 a
0.4
024 —v— Surface stress/. E?Jler Beam —v— Surface stress/Euler Beam
—&— Nonlocal elasticity/Euler Beam N 0.2 m— Nonlocal elasticity/Euler Beam
o —&— Surface stress and Nonlocal elasticity/Euler Beam —&— Surface stress and Nonlocal elasticity/Euler Beam
- T T T T T T T T T T 0.0 T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10
Mode number

©

1 2 3 4 5 6 7 8 9 10
Mode number

®

Fig. 9 Variation of dimensionless natural frequency with surface stress and non-local elasticity effects for different
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6. Conclusions

Analytical solutions of nanobeams including
both surface stress and non-local elasticity for
free vibration analysis are presented and verified
numerically by using the finite element method.
The analytical solutions show identical results
with that of finite element method. The obtained
results demonstrated that natural frequencies and
corresponding modes shapes of nanobeams actually
depend on the effects of surface stress and non-local
elasticity. All of the results in this study are sum-
marized as follows:

1. The surface stress increases the natural
frequencies, especially, for lower modes number.
The effect of surface stress is almost disappeared
for the mode number with higher than the fourth
mode. Moreover, non-local elasticity decreases the
natural frequencies of nanobeams and its effect is
increased for higher modes of vibration.

2. For the nanobeams including the combined
effects of surface stress and non-local elasticity, the
results indicate that the natural frequencies are in
between the one of nanobeams with surface stress and
the one with non-local elasticity. Since the surface
effect is reduced for the higher modes number, the
natural frequencies of nanobeams including com-
bined effects are converted to nanobeams which
only non-local elasticity is considered.

3. The clamped-clamped, clamped-free,
clamped-pinned and clamped-sliding nanobeams
exhibit the variation of mode shapes when the
effects of surface stress and non-local elasticity are
included. However, the surface stress and non-local
elasticity have no effect in case of the pinned-pinned

and sliding-pinned nanobeams.
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