ข้อพิจารณาในการออกแบบงานเบรกสำหรับรถยนต์ 1

สุรเชษฐ ชุติมา ¹ กรุงเทพ ตันวิสุทธิ์ ²
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี บางพล มแยกสุทธิวงศ์ กรุงเทพ 10140

วิริยาชัย วิวัฒนพงษ์พันธ์ ³ และ เบญจพร ทรงคุณมี ⁴
บริษัท สมุทรนิรดolk จำกัด

รับเมื่อ 28 กรกฎาคม 2546 ตอบรับเมื่อ 10 กุมภาพันธ์ 2547

บทคัดย่อ

ระบบเบรกเป็นหนึ่งสำคัญสำหรับความปลอดภัยของรถยนต์ จึงได้มีการวิจัยและพัฒนาให้มีสมรรถนะดีขึ้น
ควบคู่กันไปพร้อมกับการพัฒนารถยนต์ เพื่อให้ผู้ขับขี่ได้รับความปลอดภัยในการขับขี่มากที่สุด งานวิจัยนี้มี
วัตถุประสงค์เพื่อศึกษาลักษณะและการระบายความร้อนของอุปกรณ์ที่เกิดขึ้นบนจานเบรกในการกระทำการเบรกที่ทำให้จานเบรก
มีโอกาสเสียหายมากที่สุดคือ การเบรกแบบเครื่องดยุยค โดยประยุกต์วิธีฟิวในต่อเติมในการศึกษาผลของ
พลังงานความร้อนอันเนื่องมาจากความเสียหายระหว่างจานเบรกกับฝักเบรกที่เข้าสู่จานเบรกชี้วัด การกระกระจาย
ความร้อนด้วยการนำอากาศเข้าสู่จานเบรกและการพยายามรับเนื่องจากการไหลผ่านของอากาศส่งผลให้อุณหภูมิ
สูงสุดที่เกิดขึ้นมีค่าต่ำลง และเป็นปัจจัยหลักที่ทำให้สมรรถนะในการเบรกสูญเสีย ผลจากการศึกษาถึงสามารถใช้เป็น
ข้อมูลพื้นฐานเพื่อกำหนดแนวทางในการปรับปรุงการออกแบบจานเบรกของผู้ผลิตขั้นส่วนรถยนต์ให้มีสมรรถนะดีขึ้น

คำสำคัญ: จากเบรก / การระบายความร้อน / วิธีฟิวในต่อเติม

¹ ผู้ช่วยศาสตราจารย์ ภาควิชาวิศวกรรมเครื่องกล
² อาจารย์ ภาควิชาวิศวกรรมเครื่องมือนิยมและวัสดุ
³ วิศวกร ฝ่ายวิจัยและพัฒนา
Design Consideration for Automotive Disc Brake

Surachate Chutima1 Karuna Tunvisut2
King Mongkut’s University of Technology Thonburi, Bangmod, Toongkru, Bangkok 10140

Weerachai Wiwattanapongpun3 and Benjarat Hongkammee3
Somboon Malleable Iron Industrial CO., LTD.

Received 28 July 2003; accepted 10 February 2004

Abstract

Since the breaking system is essential for vehicle safety, considerable research and development to increase brake performance were undertaken along with the vehicle development for safety driving. This work aimed to study the temperature distribution of disc brake in a single stop condition which is an extreme service condition that causes disc brake failure. Finite element method is employed to study the temperature distribution as a consequence of thermal energy initiated by friction between disc brake and brake pad. Thermal conduction to the inner side of the break and thermal conduction by surrounding air assist the decreasing of highest temperature. Accordingly, the performance of brake disk is increased. Automotive parts manufacturer can use the information obtained from the investigation as a guideline to improve disk brake design for a better braking performance.

Keywords: Disc Brake / Thermal Load / Finite Element Method

1 Assistant Professor, Mechanical Engineering Department, Faculty of Engineering.
2 Lecturer, Tool and Materials Engineering Department, Faculty of Engineering.
3 Engineer, Research and Development Engineering Department.
1. บทนิพนธ์

รถยนต์ซึ่งถือได้ว่าเป็นปัจจุบันได้ใช้ระบบวัดมอเตอร์ถอยหลังเพื่อป้องกันการพังทลายอย่างต่อเนื่อง
ทั้งในด้านรูปลักษณ์ ความสะดวกสบายในการใช้งาน และเสริมแรงจูงใจความเร็วและความแรงให้สูงขึ้น ระบบแบบกัน
รถยนต์ซึ่งเป็นส่วนที่เกี่ยวข้องกับความปลอดภัยในการขับขี่จึงจำเป็นต้องมีการพัฒนาเทคโนโลยีให้มีสมรรถนะเต็ง
ขึ้นตามไปด้วยพร้อมๆกัน

รูปที่ 1 ระบบแยกแถบคีบแยก 4 ล้อที่ใช้ในรถยนต์

จากความเป็นจริงที่ว่าการออกแบบระบบเบรกเป็นที่ส่วนใหญ่สำหรับความปลอดภัยของรถยนต์ การออกแบบ
ระบบเบรกจึงถูกพัฒนาให้เหมาะสมมากขึ้น โดยการนำของพื้นที่ขยายระยะต้นที่ในการศึกษาพฤติกรรมทางกลที่เกิด
ขึ้น เมื่อตีแนวที่ก่อหนึ่งการออกแบบเปลี่ยนแปลงไป [1-14] สำหรับระบบเบรกแบบที่ใช้กับรถยนต์นั้นสมรรถนะ
จะแสดงในรูปที่ 1 สำหรับรถยนต์ที่ทำการศึกษาในครั้งนี้เป็นการวิเคราะห์ผลระบบของความร้อนที่เกิดขึ้นในระบบเบรก
แบบมีรีเลย์ความร้อน (ต้องแสดงในรูปที่ 2) เนื่องมาจากความเสี่ยงที่จะเกิดขึ้นทั้งระบบเบรกและผ้าเบรกต่อ
สมรรถนะในการทำงาน

กับระบบเบรกเมื่อทำการเบรกอย่างต่อเนื่องเป็นระยะเวลายาวนาน เช่น การเบรกขณะแช่ ซึ่งอาจเป็นสาเหตุให้เกิด
ความร้อนขึ้นในระบบเบรกสูงจนของเหลวระเหยกลายเป็นไอ และใช้เทคนิคในการทำลายอุปกรณ์ของหนังโดย
การประยุกต์คอมพิวเตอร์ในการคำนวณอุปกรณ์ที่พึ่งขึ้นในระบบเบรก และการอย่างความร้อนของเหลว
ไปยังอุปกรณ์ชิ้นอื่นๆ ส่วนในด้านการระบบควบคุมของตัวจับเบรกนั้น Laskaj และ Murphy [3] ได้ศึกษาการ
ปรับปรุงสมรรถนะและประสิทธิภาพในการระบบความร้อน บริเวณด้านหน้าจานเบรกของรถแข่ง Glenn Seton’s V8 โดยจะมีข้อมูลเพิ่มเติมที่อยู่บริเวณกันหน้ามอเตอร์สูดด้านหน้าของจานเบรก ซึ่งทำให้ความเร็วของอากาศเพิ่มสูงขึ้น ส่งผลให้การระบายความร้อนออกจากจานเบรกได้ดีขึ้น เช่น เนื่องจากมีสภาวะที่พื้นผิวของจานเบรกสูงขึ้น

ในการศึกษากรณีการทำงานของระบบแบบจานเบรกที่ใช้จานเบรกแบบมีเครื่องยนต์ระบบความร้อนและคาลิเตอร์แบบในระบบรถ เนื่องจากเป็นระบบที่มีสมรรถนะสูงและนิยมใช้กับรถยนต์ที่ต้องการใช้ในปัจจุบัน [15-16] โดยทำการวิเคราะห์พิกัดระบบความร้อนของจานเบรกเนื่องจากเป็นข้อส่วนที่มีโอกาสเสียหายมาก เมื่อมีการเปลี่ยนแปลงขึ้น ภายใต้การควบคุมของระบบจานเบรกเมื่อเป็นการระบบแบบครึ่งหยกหยุด และยังอีกข้อมูลเรื่องขั้นต่ำที่เป็นข้อกำหนดในการทดสอบมาตรฐานความปลอดภัย Japanese Industrial Standard C402 ในการดำเนินการพื้นฐานต่างๆ ที่เกิดขึ้นเพื่อเป็นข้อมูลสำหรับการวิเคราะห์โดยวิธีใหม่ต่อเดิม

![รูปที่ 2 จากแบบเบรกที่มีเครื่องระบบความร้อน](image)

2. สมการพื้นฐานสำหรับปัญหาทางความร้อน และ ทฤษฎีที่เกี่ยวข้องในการวิเคราะห์ระบบเบรก

การวิเคราะห์ที่เกี่ยวข้องกับการตกลงความร้อนจะมีอัตราส่วนขั้นต่ำจาพวกที่จะเริ่มจากมีตัวแปรไปตาม ค่าที่ต้องควบคุมทางพื้นที่เพิ่มการเตรียมร้อย อุณหภูมิ ซึ่งเป็นตัวแปรส่วนที่สามารถนับไปใช้เป็นข้อมูลพื้นฐานสำหรับการออกแบบได้ การกระจายของอุณหภูมิสามารถหายไปจากการเริ่มต้นในระบบทับอย่างใดผลของอุณหภูมิที่ได้สามารถนำไปใช้ในการตกลงทางอันยิ่งต่อเนื่องกันไปได้ลึกลับ เช่น ปรากฏการณ์ที่จะของอุณหภูมิที่คำนวณได้ไปทำการขยายตัวและความคิดในที่เกิดขึ้นในทรงตัน เป็นต้น [17]

![รูปที่ 3 แสดงการกระจายความร้อนในทรงตันสัมผัสที่ประกอบด้วยการนำความร้อนไปโดยมี Ω โดยที่พื้นผิวจานเบรก Φ อาจมีการกระทำระดับ เช่น อุณหภูมิ การให้ปริมาณความร้อนที่ผ่าน การพาความร้อน รวมไปถึงการแพร่สีได้](image)
สมการเชิงอนุพันธ์ที่เกี่ยวข้องกับการนำความร้อนภายใต้สภาวะทั่วไปที่ไม่คงตัวคือ

\[-\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z}\right) + Q = \rho c \frac{\partial T}{\partial t}\] (1)

จากทฤษฎีของฟูรีย์ (Fourier’s law) อัตราการถ่ายความร้อนจะขึ้นอยู่กับสมการดังกล่าวการนำความร้อนและความชุบของการกระจายของอุณหภูมิ โดย q_x, q_y, และ q_z เป็นอัตราการถ่ายความร้อน (heat flow rate) ตามแกน x, y, และ z. ตามลำดับ Q คือ อัตราปริมาณความร้อนที่ผลิตได้เอง (internal heat generation) ρ คือ ความหนาแน่นมวล (mass density) และ c คือ ความร้อนจำเพาะ (specific heat) ของวัตถุ สำนวน T คืออุณหภูมิที่อาจเปลี่ยนแปลงได้ตามเวลา t ซึ่งค่าน้ำหนักจากพลังงานเนื่องจากแรงผลิต

2.1 พลังงานและกำลังที่ใช้ในการบรรจุ

พลังงานที่เกิดจากการเคลื่อนที่ของระบบคืออุณหภูมิไปเป็นพลังงานความร้อนเนื่องจากความเสียดทานขณะที่ทำการบรรจุ ซึ่งพลังงานเนื่องจากการบรรจุ (E_B) นี้สามารถหาได้จากสมการเปลี่ยนแปลงความเร็วของรอบด้าน [3] คือ

\[E_B = \frac{(m/2)(V_1^2 - V_2^2)}{22} + (I/2)(\omega_1^2 - \omega_2^2)\] (2)

โดย I = โมเมนต์ความเนื้อด้านของมวลของขั้นส่วนที่เกิดการหมุน
m = มวลของรอบด้าน
V_1 = ความเร็วเริ่มต้นของการบรรจุ
V_2 = ความเร็วสุดท้ายของการบรรจุ
ω_1 = ความเร็วเริ่มต้นเมื่อเริ่มบรรจุของขั้นส่วนที่หมุน
ω_2 = ความเร็วเริ่มต้นสุดท้ายในการบรรจุของขั้นส่วนที่หมุน
เมื่อความเร็วร้อยดอลงจนหยุดนั้น จะได้ว่า $V_2 = 0$, $\omega_2 = 0$ ดังนั้นพลังงานในการเบรกจะเป็น

$$E_b = \frac{mV_1^2}{2} + \frac{I\omega_1^2}{2} \tag{3}$$

เนื่องจากล้อเป็นเฉพาะขั้นส่วนที่หมุนซึ่งมีความเร็ว $V = R\omega$ สภาวะที่ 3 จะกลายเป็น

$$E_b = \frac{m}{2} (1+\frac{I}{R^2m}) V_1^2 = \frac{kmV_1^2}{2} \tag{4}$$

โดยที่ k คือ ค่าตัวแปรแก้สภาวะขั้นส่วนที่มีการหมุน $k = (1+\frac{I}{R^2m})$ และ R เป็นรัศมีของยาง

สำหรับกำลังที่ใช้ในการเบรก P_b จะเป็นอุณหภูมิของพลังงานในการเบรกต่อเวลาที่ใช้ระหว่างเบรก จึงได้ว่า

$$P_b = \frac{d(E_b)}{dt} \tag{5}$$

เมื่อทำการเบรกดูย่อตรีทำงคงที่ ความเร็วที่เวลาใดๆ จะอยู่ในรูป

$$V(t) = V_1 - at \tag{6}$$

โดยที่ $a = \text{อัตราทรงผ่าว}$ และ $t = \text{เวลาที่ใช้ในการเบรก}$

ดังนั้นสภาวะสำหรับกำลังที่ใช้ในการเบรกซึ่งสามารถเขียนได้เป็น

$$P_b = kma (V_1 - at) \tag{7}$$

จากสภาวะของกำลังที่ใช้ในการเบรกนี้จะเห็นได้ว่ากำลังที่ใช้ในการเบรกมีค่าไม่คงที่โดยเมื่อเริ่มต้นเบรก $(t=0)$ จะใช้กำลังในการเบรกสูงสุด และแสดงในลักษณะแปรผันเชิงเส้นตรงกับเวลาที่มีค่าเป็นศูนย์เมื่อทรงยุด ดังนั้นเวลาที่ใช้เพื่อเบรกให้ทรงยุด (t_s) คือ

$$t_s = \frac{V_1}{a} \tag{8}$$
ส้ำหรับกำรเบรกกำรรัใต้ถี่รุดจะทำให้เกิดพลังงานควรมีรัชช์มาก โดยเฉพาะกำรเบรกด้วยอีทูท่วงสูง
ต้องใช้แรงกดจากดีเปอร์มากกว่าในกรณีที่อีทูท่วงต่ำ และข่วงเวลาในกำรเบรกสั้นกว่าปกติ อย่างไรก็ตาม
เพิ่มควมสดในกำรพิจำำนผู้จ้ำมักใช้ด้ำกำลังเบรกเล็ก (P_\text{bav}) โดยในข่วงนี้จะต้องไม่เกิดกำรเปลี่ยงอำ
กับมันสำหรับกำรกันในข่วงเวลา t_s เหมตุระดับแสดงในรูปที่ 4 โดยมีสมการคือ
\[P_{\text{bav}} = \frac{k(1-R_s)maV_1}{2} \] (9)

เมื่อ R_s = ควมด้านกลึงระหว่างยางกับพื้นถนน

2.2 สั้มประสิทธิ์ควมเล็กต่ำระหว่างงำนเบรกกับurname

กำรวิเคราะห์ยูนิตี้ที่เกิดขึ้นในกำรเบรกนี้ต้องกำรควมแแน่ในกำรกำหนดพลังงำนทั้งหมดที่ได้
รับเนื่องจำกกำรเบรกและกำรกระจายของควมร้อนระหว่างผ้ำแบรกและงำนเบรก Limpert [18] ได้เสนอวิธีกำร
คำนวนควมร้อนที่จะเข้ำสู่งำนแบรกโดยด้วยสมดุลฐานวาระกำรถ่ายควมร้อนสู่งำนแบรกและผ้ำกล่อมทำ
ควาได้จำกควมด้านเทำกำรนำควมร้อนของเนื้อวัสดุที่ทำกันและตอนภูมิกำริอยู่สำหรับสถำนะต่างๆ งำนที่สัมกำร
แสดงได้ดังสมการ
\[\frac{q_r''}{q_p''} = \frac{\Sigma R_p}{\Sigma R_r} \] (10)
เมื่อ \(q''_p \) = ค่าความร้อนที่เข้าสู่ผ้าเย็น
\(q''_r \) = ค่าความร้อนที่เข้าสู่ผ้าร้อน
\(R_P \) = ค่าความต้านทานการน้ำความร้อนที่เข้าสู่ผ้าเย็น
\(R_R \) = ค่าความต้านทานการน้ำความร้อนที่เข้าสู่ผ้าร้อน

ในกรณีการกระช่อนตัว ๆ จะถือว่ากำลังไม่สามารถระบายน้ำความร้อนออกไปได้จริงซึ่งการเป็น

\[
\frac{q''_r}{q''_p} = \left(\frac{\rho_k c_r k_r}{\rho_p c_p k_p} \right)^{1/2} \tag{11}
\]

เมื่อ \(c_p \) = ค่าความร้อนจำเพาะของผ้าเย็น
\(c_r \) = ค่าความร้อนจำเพาะของผ้าร้อน
\(k_p \) = สมบัติการน้ำความร้อนของผ้าเย็น
\(k_r \) = สมบัติการน้ำความร้อนของผ้าร้อน
\(\rho_p \) = ความหนาแน่นของผ้าเย็น
\(\rho_r \) = ความหนาแน่นของผ้าร้อน

การแบ่งการรับความร้อนที่เกิดขึ้นทั้งหมดสามารถเขียนเป็นสมการความสัมพันธ์ระหว่างความร้อนที่เข้าสู่ผ้า

\begin{align*}
\gamma &= \frac{q''_r}{q''_p} = \frac{1}{1+\left(\frac{\rho_k c_r k_r}{\rho_p c_p k_p} \right)^{1/2}} \tag{12}
\end{align*}

\[\gamma\]

แต่หากเป็นการบรรจุที่ฉุนทุนมีตัว ๆ จะต้องคำนวณผลของการแพร่เสริมในการระบายน้ำความร้อนออกจากผ้า

เบรกตัว
รูปที่ 5 แผนภาพแสดงการกระจายตัวของความร้อน

2.3 แรงดันกลิ่นระหว่างยางกับพื้นถนน

แรงดันกลิ่นระหว่างยางกับพื้นถนนเกิดขึ้นเนื่องจากล้อรถยนต์หมุนเคลื่อนที่ซึ่งจะมีแรงดันของถนนเกิดขึ้นเพื่อป้องกันเสียหลิว ขณะที่การเบรกแรงส่วนนี้จะช่วยในการเบรกทำให้ระบบเบรกไม่ต้องรับพลังงานจดจุล
จากการเบรคทำให้ฝักพาราที่แรงดันกลิ่นระหว่างยางกับพื้นถนนจะทำให้ฝักพาราที่ต้องใช้ในการเบรกที่จานทำนั้นโดยความสัมพันธ์ระหว่างความดันกลิ่นและความเร็วของรถได้จาก [19]

\[R_r = 0.0136 + 0.4 \times 10^{-7} V^2 \] (13)

2.4 การคำนวณแรงระหว่างล้อหน้ากับพื้นหลัง

การคำนวณแรงระหว่างล้อหน้ากับพื้นหลังเกิดขึ้นเนื่องจากความเร็วของรถยนต์ ซึ่งแรงดันของถนนที่ยังคงกระทำไปยังหน้า สามารถเกิดจากการกระทบหน้ากับพื้นหลังไปยังล้อหน้าของรถยนต์ การแบ่งการกระจายน้ำหนักระหว่างล้อหน้าและล้อหลังสำหรับรถยนต์แต่ละรุ่นนั้นจะมีค่าไม่เท่ากัน เนื่องจากสุญญากังวลถึงการแบ่งน้ำหนักของตัวรถและความสูงของรถยนต์แต่ละรุ่นมีค่าไม่เท่ากัน

อีกด้านการคำนวณแรงระหว่างล้อหน้ากับพื้นหลัง (\(\phi \)) สามารถคำนวณได้จากสมการดังนี้

\[\phi = \frac{F_{z,F}}{F_{z,F} + F_{z,R}} \] (14)

โดยที่ \(F_{z,F} = (1-\psi+\chi a) aW \) (15)

\(F_{z,R} = (\psi-\chi a) aW \) (16)
เมื่อ $W = $ น้ำหนักรถยนต์

$L_F = $ ระยะตามแนวอนองจากจุดศูนย์มวลของรถถึงแนวแกนล้อหน้า

$L = $ ระยะตามแนวอนองจากแนวแกนล้อหน้าถึงแนวแกนล้อหลัง

$\psi = $ อัตราส่วนแกมม่ามวลผลิต (น้ำหนักที่ล้อหลังต่อน้ำหนักทั้งหมดของรถอยู่นั้น)

$F_{z,F} = $ แรงในการเบรกที่เกิดขึ้นจากล้อหน้า

$F_{z,R} = $ แรงในการเบรกที่เกิดขึ้นจากล้อหลัง

$\chi = $ $h_G/L =$ ความสูงจากศูนย์มวลของรถ (h_G) ต่อความยาว (L)

![Diagram](image_url)

ส่วน $\psi = \frac{F_{z,R}}{W}$ รวมถึงการเบรกที่เกิดขึ้นจากล้อหลัง

ส่วน $F_{z,F} = \frac{W L_F}{L}$ รวมถึงการเบรกที่เกิดขึ้นจากล้อหน้า

ส่วน $\chi = h_G/L$ ต่อความยาว (L)

ดังนั้นพลังงานความเรือนที่เข้าสู่จานเบรก (P''_0) สามารถคำนวณได้จากกำลังเบรกเฉลี่ย (P_{ba}) ตามสมการ

$$P''_0 = \phi \gamma \frac{P_{ba}}{nA}$$ \hspace{1cm} (19)

เมื่อ $n = $ จำนวนคำนวณ

$A = $ ตัวเร่งความเรือน

ส่วน γ และ ϕ แสดงไว้ในสมการ (12) และ (14) ตามล่าดับ
3. แบบจำลองไฟในตัวอิเล็คทรอนิกส์

เนื่องจากขั้นตอนที่ทำการศึกษาในรูปเรื่องต่อข้างล่างไม่สามารถใช้ทฤษฎีการถ่ายความร้อน และทฤษฎีของสภาวะรังสีที่ล้ำซึ่งถูกใช้ในการวิเคราะห์แบบจำลองได้ จึงใช้เทคนิคไฟในตัวอิเล็คทรอนิกส์ของโปรแกรมชื่อภาษาไทย I-DEAS Master Series 8 บริษัท SDRC (Structural Dynamics Research Cooperation) ในวิเคราะห์

3.1 แบบจำลองทรงตัน

การทำแบบจำลองทรงตันในการออกแบบของงานเบรก จากการศึกษาผลจริงของยุทธภูมิที่เกิดขึ้นบนงานเบรกเนื่องจากการผลิต ทำได้โดยการสร้างแบบจำลองทรงตันในลักษณะ 3 มิติให้เหมือนกับลักษณะทางกายภาพ โดยคำนึงถึงความข้างของรูปจริงตลอดจนสภาพแวดล้อมที่ต้องการให้เหมาะสม ดังแสดงในรูปที่ 7 และ 8 ส่วนรายละเอียดของพื้นที่แสดงอยู่ในรูปที่ 9 จากนั้นจึงต่อสายร่างแบบจำลองไฟในตัวอิเล็คทรอนิกส์ แล้ววิเคราะห์พฤติกรรมที่เกิดขึ้นบนงานเบรกภายใต้การกระจายความร้อน

รูปที่ 7 แบบจำลองทรงตันของงานเบรก

รูปที่ 8 ส่วนประกอบแบบจำลองทรงตันของงานเบรก
3.2 แบบจำลองไฟในเตาอิเล็คทรอนิกส์

แบบจำลองไฟในเตาอิเล็คทรอนิกส์ของชุดแบบจำลองจะสร้างจากแบบจำลองทรงดิบ โดยในแบบจำลอง FE จะประกอบด้วยส่วนของงานแบบจำลองทรงดิบ ผ่านแบบจำลองทรงดิบ และอุปกรณ์ที่อยู่รอบๆ งานแบบจำลองทรงดิบ Solid Parabolic Brick ซึ่งเป็นอิเล็กทรอนิกส์แบบที่ต้องการมี 8 โฟกัส ส่วนลักษณะแบบจำลองไฟในเตาอิเล็คทรอนิกส์ของชุดแบบจำลองที่ได้แสดงไว้ในรูปที่ 10 ซึ่งมีจำนวนอิเล็กทรอนิกส์ที่ใช้สำหรับส่วนต่างๆ ดังตารางที่ 1
ตารางที่ 1 จำนวนอิเล็มแต่งที่ใช้ในแบบจำลองไฟในเดือนเดือนต่อชุดบาง

<table>
<thead>
<tr>
<th>ชนิดของอิเล็มแต่ง</th>
<th>จำนวน</th>
<th>จำนวนอิเล็มแต่ง</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Linear Brick</td>
<td>อากาศ</td>
<td>59,849</td>
</tr>
<tr>
<td>Solid Linear Brick</td>
<td>ดำรง</td>
<td>1,684</td>
</tr>
</tbody>
</table>

ตารางที่ 2 แสดงสมบัติของเหล็กหล่อสีเทา Class 25 และผ้ายาง

<table>
<thead>
<tr>
<th>สมบัติ (หน่วย)</th>
<th>วัสดุ</th>
<th>เหล็กหล่อสีเทา Class 25</th>
<th>ผ้ายาง</th>
</tr>
</thead>
<tbody>
<tr>
<td>โมดูลยืดหยุ่น (G Pa)</td>
<td>79</td>
<td>34.3</td>
<td></td>
</tr>
<tr>
<td>ความทนแน่นแรง (kg/m²)</td>
<td>7350</td>
<td>2450</td>
<td></td>
</tr>
<tr>
<td>อัตราส่วนปั๊มของ</td>
<td>0.2</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ค่าการนำความร้อน (W/m)</td>
<td>46.2</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>ความร้อนเจ้าที่ (J/kg K)</td>
<td>512</td>
<td>825</td>
<td></td>
</tr>
<tr>
<td>ลิ่มประสิทธิ์การขยายตัวทางความร้อน (1/°C)</td>
<td>1.3 E-11</td>
<td>1.3 E-11</td>
<td></td>
</tr>
<tr>
<td>ความแข็งแรง (G Pa)</td>
<td>292.54</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ลิ่มประสิทธิ์ความเย็น (kg)</td>
<td>-</td>
<td>0.37</td>
<td></td>
</tr>
</tbody>
</table>

3.3 สมบัติทางกลของวัสดุ

ในการศึกษาค่าสมบัติของวัสดุที่ใช้ในการวิเคราะห์ได้รับความอนุเคราะห์จากบริษัทสมุนบานหล่อเหล็ก

3.4 สภาพเงื่อนไขขอบ

สภาพเงื่อนไขขอบที่ใช้ในการวิเคราะห์ได้รับความอนุเคราะห์จากบริษัทสมุนบานหล่อเหล็ก

3.3 สมบัติทางกลของวัสดุ

ในการศึกษาค่าสมบัติของวัสดุที่ใช้ในการวิเคราะห์ได้รับความอนุเคราะห์จากบริษัทสมุนบานหล่อเหล็ก

3.4 สภาพเงื่อนไขขอบ

สภาพเงื่อนไขขอบที่ใช้ในการวิเคราะห์ได้รับความอนุเคราะห์จากบริษัทสมุนบานหล่อเหล็ก

ผลกระทบการกระจายของอุณหภูมินานเครื่องเป็นผลของการความร้อนจากความเสี่ยงความระหว่าง

ผลกระทบจากผ้ายาง อาจเรียกต่อการคำนวณพลังงานสูงซึ่งเปลี่ยนรูปเป็นพลังงานความร้อน แล้วนำไป
พลังงานความร้อนที่เห็นได้สรุประบบเป็นการวิเคราะห์การกระจายตัวของอุณหภูมิที่เกิดขึ้น ผลลัพธ์ความร้อน
ตกลงคำนวณได้จากสมการ (19) โดยมีข้อมูลส่วนการวิเคราะห์ตั้งแต่ส่งผลในตารางที่ 3
ตารางที่ 3 ข้อมูลที่ใช้ในการคำนวณพลังงานความร้อนในการเบรก

<table>
<thead>
<tr>
<th>ตัวแปร</th>
<th>ค่า</th>
</tr>
</thead>
<tbody>
<tr>
<td>น้ำหนักของรถ (W)</td>
<td>1315 กิโลกรัม</td>
</tr>
<tr>
<td>ความเร็วขณะเบรก (V)</td>
<td>160 กิโลเมตรต่อชั่วโมง</td>
</tr>
<tr>
<td>อัตราหน่วยของรถ (a)</td>
<td>0.6G (5.886 แรงต่อวินาที)</td>
</tr>
<tr>
<td>เวลาที่ใช้ในการเบรก (t)</td>
<td>7.55 วินาที</td>
</tr>
<tr>
<td>พื้นที่รับความร้อน</td>
<td>0.0338 ตารางเมตร</td>
</tr>
</tbody>
</table>

สั่งพรมคำนวณผลลัพธ์ระหว่างกับพื้นที่รวมสุ่มคำนวณได้ดังนี้

\[R_v = 0.0136 + 0.4 \times 10^{-7} V^2 = 0.013679012 \]

โดยที่กำลังเบรกเฉลี่ยที่เกิดขึ้นขณะทำกำลังเบรกอยู่ (P_{bav}) จะหาได้จากสมการที่ (9) เป็น

\[P_{bav} = \frac{k(1-R) maV^2}{2} = 195,096.56 \text{ วัตต์} \]

การบริบิบร้อยของร้่อนที่เกิดขึ้นตังหมด เมื่อใช้บริบิบนานที่กำลังเบรกขึ้นสกปร์สามารถคำนวณอย่างราบรื่องใน

การเบรกที่เจาะเบรกพ่ว์กิน \(y \) ได้เท่ากับ 0.9076 ดังนั้นพลังงานความร้อนที่จะเจาะสู่เจาะเบรก ซึ่งเป็นข้อมูลของกำรที่

ใช้ในการคำนวณลูกรอุณภูมิที่เกิดขึ้นในเจาะเบรก จะได้จากการแทนค่าต่างๆ ที่คำนวณได้ลงในสมการที่ (19) ซึ่งได้ว่า

\[P_o \] ทำกับ 846.26 กิโลวัตต์ต่อตารางเมตร

ส่วนการกำหนดเงื่อนไขการเข้าระบบความร้อนออกจากการเบรกเนื่องมาจากกำรพยาทางอากาศ คดังแสดงในรูปที่ 11 มีรายละเอียดของข้อมูลที่ใช้ดังนี้

1. อากาศภายนอกที่จะไหลผ่านเจาะเบรกมีอุณหภูมิเท่ากับ 25 องศาเซลเซียส

2. พลังงานความร้อนเข้าสู่เจาะเบรกบริติสท์ระหว่างเจาะเบรกกับเจาะเบรกตามที่คำนวณได้มีค่าเท่ากับ 864,253 กิโลวัตต์ต่อตารางเมตร เป็นเวลา 7.55 วินาที

3. กำลังความร้อนของเจาะเป็นความแตกต่างระหว่างความค่าของอากาศ ซึ่งเป็นค่าที่คำนวณได้จาก

ความเร็วของอากาศที่เข้าสู่เจาะเบรกที่มีค่ามาตรฐานเท่ากับ 50 กิโลเมตรต่อชั่วโมง แล้วเปลี่ยนเป็นความค่าของแตก

ต่างโดยใช้สมการเบรกอยู่ ได้ความแตกต่างของความค่าที่เปรียบเทียบพนมิ่นเข้าของระบบความร้อนมีค่าเท่ากับ 112 ปascal
4. ผลการคำนวณและการวิเคราะห์

ในการวิเคราะห์ผลกระทบของความร้อนต่อข่ายรถจะพิจารณาปริมาณเพียงอุณหภูมิที่เกิดขึ้นในข่ายรถ เมื่อปรับเปลี่ยนตัวปรับซึ่งเป็นมิติของข่ายรถไป ตัวปรับดังกล่าวคือความสูงของคริสต์มาตราความร้อน และจำนวนคริสต์มาตราความร้อน

ในขณะที่ทำการแยก พลังงานความร้อนจากการเสียดสีระหว่างข่ายรถกับผ้าแบบที่ทำให้ข่ายรถมีอุณหภูมิสูงขึ้น เป็นเหตุให้สมรรถนะในการเบรกลดลงเนื่องจากคำผลต่อประสิทธิภาพเสียดสีระหว่างผ้าแบบและข่ายรถ มีค่าต่ำกว่า การระบายความร้อนออกจากข่ายรถได้วิเคราะห์จะทำให้การกระจายของอุณหภูมิข่ายรถเกิดขึ้น ไม่เกิดการสะสมอุณหภูมิของข่ายรถที่บ้างคำเหลืองส่งผลให้มีสมรรถนะในการเบรกดี ในกำรวิเคราะห์ที่ทำการ คำนวณคำผลต่อประสิทธิภาพการระบายความร้อนออกจากข่ายรถต่างๆ ข่ายรถ ได้แก่ ปริมาณผิวของข่ายรถ ปริมาณคริสต์มาตราความร้อน ซึ่งเป็นตัวบ่งชี้ถึงความสามารถในการระบายความร้อนด้วยการวิเคราะห์แบบการไหลที่ โดยปริมาณความร้อนที่สูงสุดปริมาณผิวสัมผัสระหว่างข่ายรถกับผ้าแบบเกิดขึ้นตลอดช่วงเวลาที่ทำการแยก เป็นการที่มากกว่า ในขณะที่มีการระบายความร้อนออกจากข่ายรถด้วยการพยาค้าอากาศเกิดขึ้นไปพร้อมกัน
รูปที่ 12 การกระจายตัวของอุณหภูมิในงานเบรกเมื่อได้รับการระบาย

ผลจากการกระจายตัวของอุณหภูมิที่เกิดขึ้นในงานเบรกสำหรับการลำาบทความรับที่มีสภาวะไม่คงที่ จากช่วงเวลาที่เริ่มทำการบวกกระแสที่ระบายช้าขึ้นที่ในรูปที่ 12 แสดงให้เห็นว่าบริเวณมีพิกัดที่ส่งอิสระของงานเบรกเป็นบริเวณที่เกิดอุณหภูมิสูง และมีอัตราบันไดอุณหภูมิสูงสุดซึ่งมีค่าเท่ากับ 280.2 องศาเซลเซียส เนื่องจากเป็นบริเวณที่ได้รับปริมาณความร้อนโดยตรงจากการสัมผัสกับจานเบรกที่มั้งเบรก ส่วนบริเวณอื่นที่ไม่ได้รับความร้อนโดยตรง จะมีการลำาบทความร้อนโดยการนำของวัสดุที่ใช้ทำงานเบรก ซึ่งอุณหภูมิที่เกิดขึ้นจะลดลงเมื่อระยะทางจากพิษวัสดุของงานเบรกเพิ่มขึ้นและที่พิษวัสดุของงานเบรกซึ่งเป็นตัวแปรที่สอดคล้องกับอุณหภูมิไม่สูงนักเนื่องจากอยู่ทางจากตัวงานเบรกมาก ส่วนที่บริเวณของระบบความร้อนจะมีอุณหภูมิที่รำคำวับเร็วไปสั้นในเบรกเนื่องจากมีการลำาบทความร้อนแบบการลำาของอากาศที่ไหลผ่านงานเบรก

รูปที่ 13 ภาพตัดตรงแสดงการกระจายตัวของอุณหภูมิในงานเบรก
รูปที่ 14 แผนภูมิแสดงอุณหภูมิสูงสุดที่เกิดขึ้นในงานแบบเมื่อปรับกระชับช่วงเวลาต่างๆ

จากรูปที่ 13 จะเห็นได้ว่าอุณหภูมิสูงสุดที่เกิดขึ้นในงานแบบจะสูงกว่าในงานแบบสั่งเล็กน้อย เนื่องจากปริมาณความร้อนของงานแบบจะสามารถกล่าวถึงด้วยการนำผ่านเนื้อวัสดุออกไปช่องของงานแบบได้ และการกระชับของอุณหภูมิตามแนวร่วมจะเกิดขึ้นมากที่บริเวณเครื่องบาร์จมีการผลิตเนื่องจากอุณหภูมิต่ำจะสามารถก่อให้เกิดความร้อนได้มากกว่าไว้ในงานแบบ แต่ที่ระดับของอุณหภูมิของอากาศที่สูงขึ้นจะถ่ายความร้อนออกจากเครื่องงานแบบได้น้อย อย่างไรก็ตามการระบายความร้อนเนื่องจากการพ่นน้ำจะมีส่วนช่วยในการลดอุณหภูมิได้มากกว่านักเนื่องจากการปรากฏชื่อในช่วงเวลาสั้น

ส่วนอุณหภูมิที่ดาแนงต่างๆ บนงานแบบตื่นเต้นด้วยการทำงานแบบทั้งหมดอุณหภูมิได้แสดงไว้ในรูปที่ 14 อุณหภูมิที่ดาแน่ง A และ B (ดาแน่งของจุด A B C และ D แสดงอยู่ในรูปที่ 13) จะเพิ่มขึ้นอย่างรวดเร็ว ในช่วงแรกแบบแรก และหลังจากนั้นจะลดลงความร้อนเพื่อที่ระดับจะเป็นเส้นตรง โดยอัตราการฟื้นตัวของอุณหภูมิที่ดาแน่ง B จะต่ำกว่าที่ดาแน่ง A เนื่องจากปริมาณความร้อนต่างๆ การนำไปสู่เครื่องงานแบบได้น้อยกว่าดังนั้นในเวลาน้อยต้นส่วนที่เครื่องบาร์จมีอัตราการเพิ่มของอุณหภูมิในช่วงเวลานี้มักจะเกิดขึ้นได้ไม่ถูกต้องแต่ส่วนของน้ำจะมีอัตราการเพิ่มขึ้นของอุณหภูมิเกิดดังกล่าวที่ดาแน่ง A ในขณะที่ดาแน่ง D จะมีอัตราการเพิ่มขึ้นของอุณหภูมิต่ำที่สุดเนื่องจากเครื่องงานที่จะถ่ายทำแม้จะดาแน่งนี้ทำงอบำคบการไปแล้วบางส่วน

ในการศึกษาผลกระทบของอุณหภูมิสูงสุดที่เกิดขึ้นเมื่อเปลี่ยนแปลงจุดเน้น และความสูงของเครื่องหมายความร้อนจะแสดงในรูปที่ 15 และรูปที่ 16 ตามลำดับ ผลของการเพิ่มจำนวนเครื่องหมายความร้อนระหว่างจะทำให้อุณหภูมิสูงสุดที่เกิดขึ้นบนงานแบบเกษตรต่อไปในแต่ละปีเป็นส่วนของผลการเปลี่ยนแปลงที่เกิดขึ้นมีที่มาจากนักเช่นเดียวกันกับผลที่ได้จากการเพิ่มความสูงของเครื่องหมายความร้อน
รูปที่ 15 แผนภูมิแสดงความสัมพันธ์ระหว่างอายุหนุ่มผู้สูงอายุกับจำนวนครั้งที่เสี่ยงต่อการป่วยรักษาความร้อน

รูปที่ 16 แผนภูมิแสดงความสัมพันธ์ระหว่างอายุหนุ่มผู้สูงอายุกับความสูงของครั้งป่วยรักษาความร้อน

ส่วนในรูปที่ 17 และรูปที่ 18 ได้แสดงน้ำหนักของงานนี้เพิ่มขึ้นเมื่อจำนวนและความสูงของครับ
ระบบความร้อนเพิ่มขึ้นตามลำดับ การเพิ่มขึ้นของจำนวนหรือความสูงของครับระบบความร้อนที่ส่งผลให้ความ
สามารถในการระบายความร้อนเพิ่มขึ้นเพียงเล็กน้อยนั้นเป็นเพราะเชิงลึกในการระบายความร้อนด้วยการพาดิด
ชิ้นคอนกรีตเพื่อการลดของอุณหภูมิสูงสุดเกิดจากน้ำหนักที่เพิ่มขึ้นทำให้การกระจายความร้อนด้วยการน้ำที่ขึ้น
แม่น้ำหนักเพิ่มขึ้นจะทำให้ผู้ผลิตมีดีที่สุดในการสูญ

รูปที่ 17 แผนภูมิแสดงความสัมพันธ์ระหว่างน้ำหนักของ
งานนี้กับจำนวนครั้งที่เสี่ยงต่อการป่วยรักษาความร้อน

รูปที่ 18 แผนภูมิแสดงความสัมพันธ์ระหว่างน้ำหนักของ
งานนี้กับความสูงของครั้งป่วยรักษาความร้อน
หากมีอิทธิการใหญ่ของอาการในระบบความร้อนคือ การเพิ่มจำนวนเครื่องระบบความร้อนจะทำให้ อาการที่ทดสอบแต่ละครั้งมีความเร็วลดลง ซึ่งก็จะทำให้สัมผัสที่เกิดขึ้นลึกลับได้ โดย การลดลงของจุดความร้อนของอากาศและสัมผัสที่เกิดขึ้นจะมีลักษณะเป็นเส้นตรงเมื่อจำนวนเครื่อง ระบบความร้อนเพิ่มขึ้น ดังแสดงในรูปที่ 19

รูปที่ 19 แผนภาพแสดงความสัมพันธ์ระหว่างลิมิตที่ การกลับของความร้อนและความเร็วของอากาศที่ผ่านข้น ระบบความร้อนกับจำนวนเครื่องระบบความร้อน

ในทางกลับกัน รูปที่ 20 แสดงถึงการเพิ่มความสูงของเครื่องระบบความร้อนที่จะทำให้ความเร็วของอากาศมี ค่าเพิ่มสูงขึ้น ซึ่งสามารถอธิบายได้ว่าเป็นเพราะความดันทางการไหลของอากาศมีค่าต่ำลง และความเร็วของอากาศ ที่เพิ่มขึ้นนี้ส่งผลให้สัมผัสที่เกิดขึ้นลึกลับที่เกิดขึ้นด้วยเช่นกัน ดังนั้นเมื่อพิจารณาในประเด็นของการหา ความร้อน การเพิ่มความสูงของเครื่องระบบความร้อนที่เหมาะสมก็จะแสดงถึงการเพิ่มจำนวนเครื่อง แต่อย่างไรก็ตาม ก็ต้องพิจารณาเรื่องใดกำหนดของมีลักษณะความสูงในการประกอบของชุดจำแนกขึ้นส่วนอื่นๆ ด้วย

5. สรุปผลและข้อเสนอแนะ

อุณหภูมิสูงสุดที่เกิดขึ้นบนภูเขาคือเกิดจากการเปลี่ยนรูปพลังงานจุดของการเสี่ยงสิ ระหว่างผ้าพับและเครื่องแบบเกิดขึ้นในที่สูงสุดของอากาศ จะบ่งต่อสมการในการใช้งานของจุดกับ การลดอุณหภูมิสูงสุดที่เกิดขึ้นของจุดนั้นเองจะทำให้เป็นสิ่งสำคัญ ที่เกิดขึ้นจากการจัดการลดลงของอุณหภูมิเป็นรูปแบบ ของพื้นที่ที่ถูกกำหนดโดยปัจจัยสำคัญของประสบการณ์ ความสามารถในการกลับความร้อนตัวการน้าของ วัสดุที่ใช้ทำจาน และความสามารถในการขอความร้อนตัวการพัดอากาศ

ในแหล่งของการระบบความร้อนตัวการพัดอากาศ การปรับเปลี่ยนเพิ่มความสูงของเครื่องระบบความร้อน จะทำให้อุณหภูมิสูงสุดมีค่าลดลง โดยมีประสิทธิ์การกลับความร้อนและความเร็วของอากาศที่ผ่านข้นระบบ ความร้อนจะมีคุ้มครองในขณะที่การเพิ่มจำนวนเครื่องระบบความร้อนจะทำให้ค่าของอุณหภูมิสูงสุดลดลงเช่นกัน โดย อากาศที่ทดสอบแล้วแต่ละครั้งจะมีค่าสัมผัสที่เกิดขึ้นต่ำกว่าเท่าที่การเพิ่มจำนวนเครื่องระบบความร้อนเนื่องจากการผลิตไฟฟ้าที่ แต
การเพิ่มขึ้นของความสูงหรือจำนวนครั้งจะส่งผลให้สิ่งเปลืองค่าใช้จ่ายด้านวัสดุสูงขึ้นเชิงความเหล็กเสื่อม การเพิ่มความสามารถในการระบบน้ำควบคุมด้วยการเพิ่มความร้อนปรับปรุงให้อาลักษณ์ที่ปล่อยมีความได้เสียเพิ่มขึ้น แทนด้วยการออกแบบและร่างของเครื่องตายละแซม นอกจากนี้อาจหาวิธีการอื่นในการเพิ่มอัตราไหลดังเช่น งานของ Laskaj และ Murphy [3] ได้ที่ได้ แต่ยังไม่ก็ตามสำหรับกรณีการเปลี่ยนแบบครั้งเดียวหยุด การระบบน้ำควบคุมด้วยการพักผ่อนอาจจะมีส่วนต่อการเพิ่มสมรรถนะในการบริโภคพลังงาน

การขยายความร้อนตัวกันการนำของสูงเสี่ยงได้ว่าเป็นปัจจัยหลักในการลดอายุสูงสุดที่เกิดขึ้นสำหรับกรณีของการออกแบบเครื่องเต้าหยุด การลดของความร้อนและความสูงของอากาศเนื่องเพิ่มจำนวนครั้งให้ความสามารถในการพักผ่อนลดลง แต่จะช่วยในการ nowadays หรือเพิ่มขึ้น ผู้ผลิตสินงวดยืนยัน ควบคุมการกระจายความสูงสุดที่เกิดขึ้นจะทำให้การกระจายของอุณหภูมิเป็นอย่างรวดเร็ว ช่วยให้อายุสูงสุดต่อต่อ หรือทำให้ความนั้นเพิ่มเติมเพื่อให้การพักผ่อนที่มีการกระจายความร้อนได้ดีขึ้น โดยยังคงใช้ความแข็งแรง และมีติดตามเรื่องของการใช้งาน

5. กิตติกรรมประกาศ

งานวิจัยได้รับทุนสนับสนุนส่วนหนึ่งจาก สถาบันยานยนต์ ภายใต้โครงการ “โครงการพัฒนาขีดความสามารถในการออกแบบและผลิตชิ้นส่วนยานยนต์” ประจำปีงบประมาณ 2546

6. เอกสารอ้างอิง

14. ลายประสิทธิ์ เภัช, 2544, การวิเคราะห์ทางด้านอุณหภูมิของจานเบรกขัดต่างๆ, ภาควิชาวิศวกรรมแสบซ์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ.

15. จันทร์ ogenesis, 2532, ระบบเบรกขัด, บริษัท เจเนเรียลสกู๊ป ชอนแดร์ จำกัด, กรุงเทพฯ, 302 หน้า.

16. อัครชัย ทองอุทุม, 2539, กลศาสตร์แบบอนันต์ 1, สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ. หน้า 129-185

17. ปราโมทย์ เศรษฐาไพร, 2537, ไฟนด์ไทยแลนด์ในงานวิศวกรรม, จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ, หน้า 250-290.
