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Model Order Reduction of Linear Time-Invariant
Dynamic Systems via Cuckoo Search
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Abstract

This article proposes a model order reduction method for linear time-invariant (LTI) dynamic
systems via cuckoo search (CS), which is one of the most powerful population-based metaheuristic
optimization search techniques. The proposed order reduction method can be classified as the metaheuristic
optimization. In this work, two selected cases of higher-order systems from the literature, i.c., fourth-order
and eighth-order systems, were reduced to the second-order models. Genetic algorithm (GA) and particle
swarm optimization (PSO), two well-known population-based metaheuristic optimization search
techniques, were also applied for performance comparison. It was found that the reduced second-order
models obtained via the CS retain the system dynamic behavior of the original higher-order systems
superior to those obtained via GA and PSO. The time-domain and frequency-domain responses of the

reduced order models show the accuracy and efficiency of the proposed method.
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1. Introduction

In system modeling process, several physical
systems are interpreted and translated into
mathematical model via higher-order differential
equations. This leads to the higher-order model
representation. The analysis and design of high-
order models are complicated and tedious works.
It becomes more complex when the order of the
system increases. The approximation of higher-
order systems by lower-order models retaining the
dynamic behavior of the original system is one
of the most important problems in control system
theory. The use of a reduced-order model makes
it easy to analysis, simulation and design. By
literatures, numerous methods were proposed
for order reduction of linear time-invariant (LTI)
dynamic systems. For examples, aggregation
method [1], Pade approximation [2], Routh stability
technique [3], moment matching technique
[4], L., optimization technique [5] and Routh
approximation [6] have been consecutively
proposed for model order reduction. Although
there are several available methods, no method
provides the best results for all systems. Model
order reduction can be classified into the class of
optimization problem. Recently, the metaheuristic
optimization search techniques (called shortly
“metaheuristics”) have been widely applied to
solve optimization problems [7]. Two popular
population-based metaheuristic optimization
techniques are genetic algorithm (GA) [8] and
particle swarm optimization (PSO) [9]. For GA,
it has been widely applied to many real-world
applications, for example, mixed model assembly
line balancing [10] and model parameter
identification [11]. For PSO, it has been also
widely applied to many real-world applications,

for example, control synthesis [12] and energy

forecasting [13]. From literature reviews, many
metaheuristics have been applied to model order
reduction, for examples, order reduction by GA
[14], PSO [15] and PSO associated with the
bacterial foraging optimization (BFO) [16].

From literatures, the cuckoo search (CS) firstly
proposed by Yang and Deb [17] is one of the
most powerful population-based nature-inspired
metaheuristic opt mization techniques. The CS
algorithm is based on the obligate brood parasitic
behaviour of some cuckoo species in combination
with the Lévy flight behaviour of some birds and
fruit flies. The CS has been successfully applied
to several real-world engineering problems such
as spring design optimization [18], welded beam
design [18, 19], multiple disc brake [19] and
control system design [20]. Moreover, the global
convergent property of the CS algorithms has been
proved and reported [21]. In this article, the CS is
applied to model order reduction of two cases of
higher-order LTI dynamic systems conducted from
literatures. The reduced-order models obtained by
CS will be compared with those obtained by GA

and PSO for accuracy and efficiency comparison.

2. Model Order Reduction Problem

Let the n" higher-order model be the s-domain
transfer functions of the original higher-order
system as G(s) stated in (1), and let the 7" reduced-
order model (» < n) be the s-domain transfer
functions of the reduced-order system as R(s)
expressed in (2), respectively. For LTI dynamic
systems, parameters d; and e; in (1) and @, and b; in
(2) are defined as scalar constants. The objective is
to find the 7" reduced-order model R(s) such that it
can retain the important properties of G(s) for the

same types of inputs.
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Model order reduction can be classified as an

optimization problem represented by the block
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diagram as shown in Figure 1, where y(t) is the
output of the original higher-order system and
y*(¢) is the output of the reduced-order model.
The integral-squared error of difference between
() and y*(r) expressed in (3) is formulated as the
objective function J. With the same input x(¢), J
will be fed back to the metaheuristic tuning block
to be minimized in order to find the appropriate
parameters of the reduced-order model satisfying
to their corresponding boundaries set as inequality
constraints stated in (3), where a; i, and a; max
are lower and upper bounds of the numerator
parameter a,, while b; i, and b; ,,x are lower and
upper bounds of the denominator parameter b,
respectively. Once J is minimized, the appropriate
parameters of the reduced-order model are

successfully obtained.

U

r—

R Original
"| Higher-Order Model n
input J
x(1) bl
4 N Reduced-Order
| I Model V()

[

Searching Parameters

T

Metaheuristics
(GA, PSO, CS)

A

Figure 1 Model order reduction optimization problem

Minimize J = [j[y(1) - y * (1))
subject 1o a; in <4; <4; max 3)
bi min Sbi Sbi max

3. Cuckoo Search Algorithm

Originally, Yang and Deb proposed the
cuckoo search (CS) in 2009 [17] as one of the
most powerful population-based nature-inspired

metaheuristic optimization techniques. In CS

algorithm, each cuckoo lays one egg at a time, and
dumps it in a randomly chosen nest. The best nests
with high quality of eggs (solutions) will carry
over to the next search iteration (generation). The
number of available host nests is fixed, and a host
can discover an alien egg with a probability p,e
[0, 1]. The CS algorithms can be represented by the

flow diagram as visualized in Figure 2.
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- Perform objective function f(x), X = (X1,....xs)"
- Initialize search spaces

- Randomly generate x* initial solution

- Initialize Max_Gen, Gen=1

4)?—* - Update Gen: Gen++|

- Update solution: x* = x

no

Gen <= Max_Gen

A 4

- Report best solution found

yes - n cuckoo find the new nests by Lévy flight
and lay their egg in the random nests

- Evaluate all cuckoo’s eggs via f(x)

i

host bird find
cuckoo’s egg?

-m (m <= n) cuckoo’s egg is found by the host
- m cuckoo find the new nests by Lévy flight again
and lay their egg in the random nests

Figure 2 Flow diagram of cuckoo search (CS)

New solutions x*V for cuckoo i can be generated
by using a Lévy flight as stated in (4). Symbol
Lévy (1) in (4) represents a Lévy flight providing
random walk with random step drawn from a Lévy
distribution having an infinite variance with an
infinite mean as expressed in (5). In another way,
the step length s of cuckoo flight can be calculated
by (6), where u and v are drawn from normal
distribution as stated in (7). Standard deviations
of u and v are also expressed in (8), where I is the

standard Gamma function.

X" =x" +a @ Lévy(Q) )
Lévy~u=t" (1<A<3) 5)
s=— 4 (6)

1/
Iv[i/?

u~N©.02)

()
v~ N(0.02)
_ T+ p)sin(zf/2)
1+ p)/21p2 P D2 ®)

o, =1

4. Results and Discussion
4.1 Parametric Studies

In this work, the CS algorithm was coded
by MATLAB for model order reduction of two
selected cases of higher-order LTI dynamic
systems collected from literatures. Parameter
setting of the CS is studied for all cases. The
preliminary parametric study over two selected

cases is conducted by varying population size of
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cuckoo (n) =5, 10,..., 100, Lévy exponent (5) = 0.5,
1.0, 1.5, 2.0 and discovery probability (p,) = 0.1,
0.2,..., 0.9. From this study, it was found that the
best parameters of CS for both two selected cases
of model order reduction applications are n = 30,
f = 1.5 and p, = 0.2. The maximum generation
Max_Gen = 100 is then set as the termination
criteria (TC). Two collected cases of higher-order LTI
dynamic systems are reduced to be the second-order
models R(s) performed in (9). The order reduction
optimization process is to obtain the appropriate
five parameters, i.e., ao, a;, by, b, and b, in (9).
As mentioned in section 1, standard techniques
such as L, optimization technique [5] and Routh
approximation [6] can be available for solving
the model order reduction problem. However,
although such the standard techniques consume less
computational time, they cannot provide the best
results for general cases [14, 15, 16]. For comparison
in this work, the GA and PSO, two of popular
population-based metaheuristic optimization
techniques, are also conducted to solve the model
order reduction problems with the same TC. The
model reduction optimization runs of 50 trials of
each algorithm (GA, PSO and CS) with different
random initial solutions in order to obtain the best
solution. The search parameters of GA and PSO
are set as the recommendations appeared in [8] and

[9], respectively.

aps +ag (9)

R(s)=—2
sz + blS + bO

4.2 Case-I (4th Order System)
The first case is the 4™ order system as
stated in (10) [14]. Referring to the inequality
constraints in (3), the corresponding boundaries

of five parameters in this case are set as expressed

in (11). A priory set of the boundaries of five
parameters is arbitrary determined by trial and
error schemes. Because setting the boundaries of
search space is one of the basic problems of all
metaheuristics, two approaches for setting such the
boundaries are then given as follows. For the first
approach, the boundaries of search space should
be set as wide as possible to cover all feasible
solution. This approach is very easy for users, but
it will spend very long search time consumed. For
the second approach, the boundaries should be
narrowly set. This approach will spend very short
search time, but the solutions found may be locked
by upper or lower bounds. Once this occurred, users
need to adjust the boundaries to open new space for
solution exploration. In this work, after the trial and
error schemes finished, such the boundaries in (11)

are properly set for this case.

$3 + 752 245 + 24

Gy = 10
o 1105 1352 +50s 24 0
subject to 0.1<ag,by <10.0

0.1<ay,by <5.0 1)

50<b, <15.0

Results obtained by GA, PSO and CS
are summarized in Table 1, where ISE is the
integral-squared error, IAE is the integral-absolute
error and MISE is the mean of integral-squared
error. The second-order models R(s) reduced
by GA, PSO and CS are expressed in (12).
Time-domain responses, consisting of step, ramp
and impulse responses, and frequency responses
(Bode diagrams) of the original 4™ order system and
the second-order models obtained by GA, PSO and
CS are depicted in Figure 3, 4, 5 and 6, respectively.

Referring to frequency responses in Figure 6, it
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was found that the second-order models obtained
by GA, PSO and CS can retain the bandwidth of
the original 4™ order system satisfactory. Pole-zero
locations of the original 4" order system and the
second-order models obtained by GA, PSO and CS
are plotted in Figure 7. Although dominant poles of
the second-order models obtained by PSO and CS
mismatch with those of the original 4™ order system
as appeared in Figure 7(c) and Figure 7(d), the
responses of the second-order models by PSO and
CS still retain the dynamic behavior of the original
4™ order system. This is because the proposed
method in this work is the response-based (not
dominant poles-based). By the response-based, the

dominant poles of the reduced second-order models

243

alternative approach for the future research as the
open ended problem. The best convergent rates of
the objective function by the GA, PSO and CS are
visualized in Figure 8. From Figure 3 - 6, it was
found that second-order models reduced by GA,
PSO and CS can retain the dynamic behavior of the
original 4th order system satisfactory. However, it
was found from Table 1 that the CS provides the
least ISE, IAE and MISE. This can be noticed that
the CS gives the better second-order model than
GA and PSO. The convergent rates in Figure 8
confirm that the optimal solutions (parameters) are
successfully found by the CS, and the CS can provide
the better solution than GA and PSO.

2.9325+7.885

may be matched or mismatched with those of R(s)‘GA = 5
the original system. In addition, the second-order 3.8855" +11.485 +7.885
5.2055+8.989
models possess not only poles, but also zeros. R(s)‘PSO = > 12)
6.608s“ +14.89s +8.989
Responses of the reduced second-order models
R(s)\ 3 2.9745+6.519
haped by pol ffects. H th -
are shaped by pole and zero effects. However, the CS ™ 3 88452 +10.025 4 6.519
dominant poles-based model order reduction is an
Table 1 Results of case-I obtained by GA, PSO and CS
Algorithms Parameters of second-order models Errors
. a a, by b, b, ISE IAE_| _MISE
GA 7.8852 | 2.9320 | 7.8851 | 11.4802 | 3.8853 | 8.6920e-04 | 0.2029 | 1.0730e-05
PSO 8.9891 | 5.2052 | 8.9891 | 14.8903 | 6.6082 | 8.6607e-04 | 0.1592 | 1.0688e-05
CS 6.5193 | 2.9744 | 6.5193 | 10.0217 | 3.8844 | 7.3933e-04 | 0.1431 | 9.1288e-06
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Figure 4 Ramp responses of original 4™ order system and reduced 2" order models
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Figure 6 Bode diagrams of original 4" order system and reduced 2™ order models
(a) Bode diagram of original 4™ order system
(b) Bode diagram of reduced 2™ order model by GA
(¢) Bode diagram of reduced 2" order model by PSO
(d) Bode diagram of reduced 2™ order model by CS
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Figure 6 Bode diagrams of original 4" order system and reduced 2" order models

(a) Bode diagram of original 4™ order system

(b) Bode diagram of reduced 2™ order model by GA
(¢) Bode diagram of reduced 2™ order model by PSO
(d) Bode diagram of reduced 2™ order model by CS

4.3 Case-II (8" Order System)

For the second case, the 8" order system as
expressed in (13) [15, 16] is selected. In this case,
b,=1 is priori set according to the referred works
[15, 16]. The boundaries of four parameters in
this case are set as stated in (14). Like the case-I,
a priory set of the boundaries of four parameters
is arbitrary determined by trial and error schemes.
After the schemes finished, such the boundaries in
(14) are properly set for this case. Results obtained
are summarized in Table 2 and the second-order
models R(s) reduced by GA, PSO and CS are
expressed in (15). Time-domain responses,
consisting of step, ramp and impulse responses,
and frequency responses (Bode diagrams) of
the original 8" order system and the reduced

second-order models are depicted in Figure 9, 10,

11 and 12, respectively. Referring to frequency
responses in Figure 12, it was found that the
second-order models obtained by GA, PSO and CS
can retain the bandwidth of the original 8" order
system satisfactory. Pole-zero locations of the
original 8" order system and the second-order
models obtained by GA, PSO and CS are plotted in
Figure 13. It was found in this case that dominant
poles of the second-order models obtained by GA,
PSO and CS match with those of the original 8"
order system. The best convergent rates of the
objective function by the GA, PSO and CS are
visualized in Figure 14. From Figure 9 - 12, all
second-order models can retain the characteristics
of the original 8™ order system satisfactory.
However, it was found from Table 2 that the CS
provides the least ISE, IAE and MISE. This can
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second-order model than GA and PSO. Finally, the  are completely found by the CS.

best convergent rates in Figure 14 assure that the
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Figure 7 Pole-zero locations of original 4™ order system and reduced 2™ order models
(a) Pole-zero locations of original 4" order system
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appropriate parameters of the second-order model

13)
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Figure 8 Best convergent rates of the objective function for case-I by GA, PSO and CS

Table 2 Results of case-II obtained by GA, PSO and CS

s i Parameters of second-order models Errors
ay a by by ISE IAE MISE
GA 5.0651 | 17.0124 | 5.0644 | 6.8674 0.2572 11.2858 | 4.1269¢-04
PSO 5.0742 | 17.1012 | 5.1510 | 6.9723 0.1092 5.4457 | 1.1359e-04
CS 5.2593 | 16.9143 | 52593 | 6.8686 0.0692 4.0960 | 6.6833¢-05
2.5 T T T T

amplitude
&

_

o5y | Original 8th-order model T
=P Reduced 2nd-order model by GA
—0-- Reduced 2nd-order model by PSO

L =0 Reduced 2nd-order model by CS
0

1 | 1 1 |
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time(sec.)

Figure 9 Step responses of original 8" order system and reduced 2™ order models
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Figure 10 Ramp responses of original 8" order system and reduced 2™ order models
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Figure 12 Bode diagrams of original 8" order system and reduced 2" order models

(a) Bode diagram of original 8" order system

(b) Bode diagram of reduced 2™ order model by GA

(¢) Bode diagram of reduced 2" order model by PSO
(d) Bode diagram of reduced 2™ order model by CS

5. Conclusions

The novel alternative optimization method for
model order reduction of LTI dynamic systems
by CS has been proposed in this article. The
accuracy and efficiency of the proposed method
have been performed against two selected higher-

order systems and compared with GA and PSO.

As simulation results, it was found that the reduced
second-order models of two collected higher-order
(fourth-order and eighth-order) systems obtained by
the CS could retain the system dynamic behavior
of original higher-order systems superior to GA
and PSO with less IES, IAS and MIES errors. Both

time-domain and frequency-domain responses as
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well as pole-zero locations of the reduced order
models have been elaborately shown in order to
assure the accuracy and efficiency of the proposed
method. This can be concluded that the CS can be
efficiently applied to solve the model order reduction

problem. In addition, setting the boundaries of
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search space for any metaheuristics is one of the
main drawbacks of modern optimization. Some
suggestions for users about setting the boundaries
performing the search space have been also

provided in this article.
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Figure 13 Pole-zero locations of original 8" order system and reduced 2" order models

(a) Pole-zero locations of original 8% order system

(b) Pole-zero locations of reduced 2™ order model by GA

(c) Pole-zero locations of reduced 2™ order model by PSO

(d) Pole-zero locations of reduced 2™ order model by CS
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Figure 14 Best convergent rates of the objective function for case-II by GA, PSO and CS
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